
MASTER THESIS

Bc. Tomáš Nekvinda

Multilingual speech synthesis

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Mgr. et Mgr. Ondřej Dušek, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Ondřej for guidance, advice, patience, will-
ingness, and all the helpful consultations, and my room-mate David for his great
ideas and debugging sessions. Of course, I have to thank you all who provided
me with food supplies and did not disturb me while I was pretending that I do
something useful.

ii

Title: Multilingual speech synthesis

Author: Bc. Tomáš Nekvinda

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondřej Dušek, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: This work explores multilingual speech synthesis. We compare three
models based on Tacotron that utilize various levels of parameter sharing. Two
of them follow recent multilingual text-to-speech systems. The first one makes
use of a fully-shared encoder and an adversarial classifier that removes speaker-
dependent information from the encoder. The other uses language-specific en-
coders. We introduce a new approach that combines the best of both previous
methods. It enables effective parameter sharing using a meta-learning technique,
preserves encoder’s flexibility, and actively removes speaker-specific information
in the encoder. We compare the three models on two tasks. The first one aims at
joint multilingual training on ten languages and reveals their knowledge-sharing
abilities. The second concerns code-switching. We show that our model effectively
shares information across languages, and according to a subjective evaluation test,
it produces more natural and accurate code-switching speech.

Keywords: text-to-speech, speech synthesis, multilinguality, natural language
processing, deep learning

iii

Contents

Introduction 3

1 Preliminaries 5

1.1 Audio Signal Processing . 5

1.1.1 Human Perception and Frequency 6

1.1.2 Frequency Domain . 7

1.1.3 Quefrency Domain . 8

1.2 Deep learning . 9

2 Speech Synthesis 15

2.1 History . 16

2.1.1 Concatenative Synthesis 16

2.1.2 Statistical Parametric Speech Synthesis 16

2.2 Deep Neural Systems . 17

2.2.1 WaveNet . 17

2.2.2 Deep Voice . 19

2.2.3 Tacotron 1 . 20

2.2.4 Tacotron 2 . 23

2.2.5 WaveRNN . 24

2.2.6 Deep Convolutional TTS 26

2.2.7 Others . 27

3 Evaluation Metrics 28

3.1 Mel Cepstral Distortion . 28

3.2 Character Error Rate . 29

3.3 Mean Opinion Score . 30

3.4 MUSHRA . 31

4 Datasets 32

1

4.1 Monolingual Datasets . 33

4.2 Multilingual Datasets . 35

5 Multilingual Speech Synthesis 40

5.1 Low-resource Languages . 41

5.2 Voice Cloning . 42

5.3 Code-switching . 43

6 Experiments 45

6.1 Implementation . 46

6.1.1 Tacotron 2 . 46

6.1.2 Shared Encoder . 50

6.1.3 Separate Encoders . 50

6.1.4 Generated Encoder . 52

6.1.5 WaveRNN Vocoder . 54

6.2 Data Preparation . 55

6.2.1 CSS10 . 55

6.2.2 Common Voice . 57

6.3 Multilingual Training . 60

6.3.1 Experiment Setup . 60

6.3.2 Discussion of Results . 61

6.4 Code-switching and Voice Cloning 66

6.4.1 Experiment Setup . 67

6.4.2 Discussion of Results . 70

Conclusion 74

Bibliography 76

2

Introduction

Deep learning has become a dominant field of artificial intelligence and machine
learning. Contemporary models achieve state-of-the-art results in many areas of
computer vision or natural language processing, and speech synthesis is not an
exception. Current deep learning models can synthesize natural-sounding speech
in real time [Kalchbrenner et al., 2018], and make possible an efficient end-to-end
training that does not put high demands on quality, amount, and preprocessing
of training data [Wang et al., 2017]. Based on these advances, speech processing
researchers aim at, for example, expressiveness [Wang et al., 2018], controllability
[Hsu et al., 2019], or few-shot voice cloning [Jia et al., 2018].

Many studies in the field of neural machine translation concern the possibilities
of transfer learning or multilingual training, i.e., joint training of a single model
using multiple language pairs. In general, multilingual training has some advan-
tages over transfer learning. First, it can maintain performance while reducing
the total number of models that need to be stored. Second, it can utilize data
from multiple languages [Sachan and Neubig, 2018] and it can enable functionality
such as one-to-many or many-to-many translation [Platanios et al., 2018].

As is the case with neural machine translation, current speech synthesis does not
leave multilingual models aside. Chen et al. [2019] explore possibilities of adap-
tation of a pre-trained monolingual model to different languages using transfer
learning, and Zhang et al. [2019] or Cao et al. [2019] successfully performed
cross-lingual voice cloning and code-switching, respectively. To the best of our
knowledge, the majority of current multilingual research evaluates simultaneous
synthesis of just two or three languages.

Goal & Contribution

The goal of this work is to implement a multilingual system for speech synthesis
based on neural networks, evaluate its performance, and compare it with mono-
lingual or other multilingual approaches.

We examine the principle of multilingual training known from neural machine
translation in the context of speech synthesis. At first, we introduce our reim-
plementation of a state-of-the-art text-to-speech model. Secondly, we compare
three of our own models with various levels of cross-lingual parameter sharing
on ten languages (namely on German, Greek, Spanish, Finnish, French, Hungar-
ian, Japanese, Dutch, Russian and Chinese). Moreover, we mention multilingual
training in low-resource situations. In the end, we experimentally compare the
code-switching abilities of the three models on German, French, Dutch, Russian,
and Chinese. For the training of these models, we created a new size-reduced

3

but cleaned multilingual and multi-speaker dataset. The source code, evalua-
tion data, pre-trained models, and audio samples are available at the GitHub
repository of this work.1

Outline

Chapter 1 provides signal processing and deep learning basics. In Chapter 2,
we describe the historical development of speech synthesis, and we introduce
contemporary influential text-to-speech models. We pay special attention to the
architectures that we used in our experiments. Chapter 3 briefly mentions metrics
and methodologies for speech synthesis evaluation. We discuss monolingual and
multilingual datasets in Chapter 4. A summary of related work is provided in
Chapter 5. The last part of this work, namely Chapter 6, describes our original
experiments, their setup, and obtained results.

1https://github.com/Tomiinek/Multilingual_Text_to_Speech

4

https://github.com/Tomiinek/Multilingual_Text_to_Speech

Chapter 1

Preliminaries

In this chapter, we primarily describe some terms of signal processing which are
a must to understand the further reading. The second section of this chapter
groups deep learning terms and provides their brief explanation. Please note
that a detailed description of these topics is not the real subject of this work.
For more details, we refer the reader to Jurafsky and Martin [2014], who talk
about various topics related to natural language processing, Li and Cox [2019],
who describe acoustical engineering and low-level audio processing, and finally
Goodfellow et al. [2016], who provide solid basics of deep learning.

1.1 Audio Signal Processing

Sound is a complex series of pressure changes propagated through a medium
such as air, liquid, etc. We can view sound as mechanical waves. During the
propagation of a wave, particles of the medium vibrate about their mean position
and transfer their energy to neighboring particles. We can describe these sound
waves using frequency f (speed of repetition), amplitude A, and phase ϕ. The
following simple equation holds in the case of a sinusoidal wave:

x(t) = A · sin(2πft + ϕ)

where x is the distance from a mean position, and t is a particular time. When
a pressure change or better said a wave reaches a sensor such as a microphone
or an ear, the mechanical energy is converted to another form such as an electric
signal. It is well known that only waves with frequencies between roughly 20Hz
and 20kHz can elicit an auditory percept by humans.

Unfortunately, real-world sound waves are not as simple as sinusoids. However,
we can measure the compression or the rarefaction of molecules of the medium
to describe them. The number of measurements must be finite so we usually
repeatedly and regularly sample the amplitude and thus convert the analog signal
into a digital one. The number of samples we measure per second is called sample
rate. Typically, a sample rate greater than 20 kHz is used in speech synthesis
tasks because human speech is usually below 10 kHz and thus lower sample rates
might not be sufficient for complete accuracy (according to the Shannon-Nyquist
sampling theorem). A graph describing amplitude as a function in the time
domain is called waveform, see Figure 1.1.

To reduce storage requirements, it can be beneficial to represent sampled am-

5

Figure 1.1: Visualization of a speech waveform (blue color) together with an ap-
proximate alignment of characters being pronounced. The horizontal axis corre-
sponds to the time domain and the vertical axis depicts the amplitude.

plitudes as integers instead of real-valued numbers. This conversion is called
quantization and it is in general lossy. Usually 8-bit or 9-bit integers are enough
to represent a speech while still preserving good quality. Pulse code modulation
(PCM) is a conversion method that simply groups samples into equally sized
buckets based on their amplitude. However, PCM does not reflect that human
hearing is more sensitive to lower intensities than large ones. An algorithm called
µ-law companding transformation [ITU-T, 1988] takes advantage of this fact.
This is an equation for the conversion of a PCM sample value x into µ-law:

µ(x) = sgn(x) log(1 + |x| µ)
log(1 + µ)

where µ = 2b and b is the number of bits per sample.

1.1.1 Human Perception and Frequency

Human perception is logarithmic. It means that even though eyes or ears can
catch an exponential range of input signals, an exponential change appears to us
as linear. An ordinary characterization of sound that people use is by a compar-
ison of pitch and loudness. These two terms correspond to human perception of
something which is called fundamental frequency and power, respectively.

The power is simply the mean squared amplitude. However, it is more common
to refer to intensity instead of power. The intensity is measured in decibels (dB)
and is equal to:

I(x) = 10 · log10
Px

P0

where Px is the power of the sampled signal x and P0 is a reference power value
such as the auditory threshold pressure.

It is known from the musical theory that an octave (a linear change) corresponds
to an interval defined by two pitches that are double or half the frequency of one
another. However, the human voice is not a pure tone. It includes a fundamental
frequency and a series of upper harmonic frequencies that are modulated by
the vocal tract. The fundamental frequency (abbreviated as F0) of a speech

6

signal at a particular time is the base frequency of vocal cords at that time.
Various psychoacoustic models were proposed to describe the relation between
F0 and pitch for audible frequencies (for example, Zwicker [1961] or Stevens et al.
[1937]). One of these models is called mel scale and defines a transformation m
of a frequency f using the following equation:

m(f) = 2595 · log10

(
1 + f

700

)

1.1.2 Frequency Domain

Even though waveforms allow us to easily describe a speech, other representations
can be more suitable for some tasks. Remember the waveform from Figure 1.1.
At the first glance, we can see where silent and loud segments are. However, it
may be difficult for us to identify parts that contain a clean speech and parts that
contain, for example, just noise or a piano playing. And it would be surely even
more complicated to disentangle a noise and a clean speech given a raw waveform.

A representation that is more convenient for solving the task outlined in the
previous paragraph makes use of the frequency domain. The Fourier transform
enables us to decompose any signal into sinusoids with certain frequencies so that
the sum of the sinus waves is equal to the original signal. In other words, it gives
us a relation between amplitudes, phases, and component frequencies that can
be turned into a graph called the frequency spectrum. As we usually work with
discretized waveforms, we need to use the discrete Fourier transform:

FT (f) =
N−1∑
k=0

xke−2πiftk =
N−1∑
k=0

xk[cos(2πftk) − i sin(2πftk)]

where xk denotes the k-th sample which appears at time tk, N is the number of
samples, and f is a frequency. Note that the transform can be computed efficiently
using the Fast Fourier transform algorithm [Brigham and Morrow, 1967].

Analysis of arbitrary waveforms using discrete Fourier transform would not be of
much use because waves change with time. We would lose detailed information
about their local properties. To tackle this issue, we can use the discrete short-
time Fourier transform (STFT):

STFT (f, k) =
∑

l∈[0,L]
xk+le

−2πiftk+lω(l)

where f is a frequency, k is the index of the sample that corresponds to the
timestamp tk. The ω denotes a window function of length L and defines the
relevant context for the particular sample. A typical window function used in
speech processing is the Hann window [Harris, 1978].

The STFT can be used to compute spectra (also called frames) for some evenly
spaced timestamps. Subsequently, we can calculate the power for each frequency
bin and each frame. By applying this process, we obtain a two dimensional array

7

Figure 1.2: Linear spectrogram of the waveform from Figure 1.1. Notice the linear
scale of the frequency domain from 0 Hz to 10 kHz in 1102 frequency bands.

called spectrogram (see Figure 1.2). Note that in the context of speech process-
ing, the length of windows is usually chosen so that it spans tens or hundreds
of milliseconds and the gap between succeeding frames usually takes around ten
milliseconds. According to the Heisenberg-Gabor limit, there is a trade-off be-
tween the time domain and the frequency domain, i.e., wide windows imply more
detailed information about frequencies, but a lower resolution in the time domain.
That is why we should set the window size carefully.

We have described the construction of linear spectrograms. They contain values
for each frequency bin and each frame, but as we have already said in Section 1.1.1,
humans perceive frequencies in a logarithmic manner. This brings us to the idea of
a compression of linear spectrograms that still preserves all information important
for our hearing. To make this compression, we can use the mel scale mentioned
earlier. The resulting representation obtained by this transform is called the mel
spectrogram (see Figure 1.3).

Figure 1.3: Mel spectrogram of the linear spectrogram from Figure 1.2. The fre-
quency domain is reduced to 80 mel bands.

1.1.3 Quefrency Domain

We have seen time and frequency domain representations. However, we can go
even further and represent audio signals in the quefrency domain. The conversion
of a mel spectrogram to the quefrency domain is done by applying the discrete
cosine transform (DCT) to the spectrogram along the frequency dimension. The

8

transform is closely related to the real part of the Fourier transform and it has
various definitions; a commonly used one is the following:

DCT (k) = C
N−1∑
n=0

xn cos
(

π(2n + 1)k
2N

)

where C is a normalization constant, N is the number of samples (number of
mel frequency bands), and xn is the value of the n-th sample (it corresponds to
the intensity in the input mel spectrogram at a particular frame and a particular
frequency band). It gives us a series of cepstra, analogous to spectra in the
frequency domain, with mel frequency cepstral coefficients (MFCC).

Figure 1.4: Visualization of MFCCs obtained from the mel spectrogram in Fig. 1.3.
Only coefficients 1–13 are shown. Low values (dark color) correspond to fricative
sounds, high values (light color) to sonorant sounds.

We should discuss what MFCCs express. The cepstral features describe changes
in the frequency domain. The first coefficient carries information about the aver-
age power of the input signal and is usually ignored. Other coefficients simplify,
in comparison with the frequency domain representation, the separation of effects
caused by the vocal tract and vocal cords. Lower values correspond to fricative
sounds and higher values to sonorant sounds (see Figure 1.4, note the fricatives
such as “sch” or “s” and sonorants, i.e., vowels or “n”). It is usual to use just
a few MFCCs because they can still provide a sufficient amount of information.

1.2 Deep learning

In further text, we refer to numerous deep learning terms and principles. Their
explanation is out of the scope of this work. Instead, we provide a glossary that
might be useful during reading. It contains brief descriptions of the terms together
with links to relevant literature. However, basic knowledge of deep learning is
still needed. We again refer the reader to [Goodfellow et al., 2016].

The rest of this chapter is a glossary with entries ordered in the lexicographical
order. We often refer to the glossary further in this work.

Activation function – Suppose a neural network that consists of a few fully
connected layers and suppose that each layer can be represented by a weight

9

matrix W . These layers can do a linear transformation: y = W ⊤x. Thus the
whole network can approximate linear functions. To describe more complex de-
pendencies, neural networks usually use affine transformations followed by non-
linearities: y = f(W ⊤x + b). The non-linear function f is called the activation
function. Commonly used functions are sigmoid, tanh, ReLU, softsign, and their
variants like PReLU, LeakyReLU, etc. See Hansen [2019].

Attention mechanism – In a general sense of the term, an attention mecha-
nism is a trainable network that can focus on specific parts of inputs. In the
context of sequence-to-sequence models (see the “Sequence-to-sequence” entry),
the attention is a network that can be queried by the decoder and that extracts
suitable information from the encoded input. There are many types of attention
mechanisms; we are interested in content-based attention (also called Bahdanau
attention [Bahdanau et al., 2015]). Let us consider the i-th decoder step. We
denote the encoded input by m ∈ RL×n and the hidden state of the decoder by
hi ∈ Rn. Then the Bahdanau attention can be described as follows:

ei
j = w⊤ tanh(Whi−1 + V mj + b)

αi
j = exp(ei

j)
/

L∑
k=1

exp(ei
k)

ci =
L∑

k=1
αi

kmk

where W ∈ RA×n and V ∈ RA×n are weight matrices, b ∈ RA is a bias and w ∈ RA

is a trainable vector. Items of the vector ei ∈ RL are usually called energies. The
normalized vector αi is a vector of attention weights and is also called alignment.
The third equation describes how to combine computed weights with encoded
inputs. The resulting vector ci ∈ Rn is the so-called context vector and is passed
into the decoder to generate the next item of the output sequence. Note that the
term V mj + b, often referred to as attention memory, does not change with i, so
it can be precomputed.

Batch normalization is a technique that normalizes layer inputs and thus
speeds up convergence and allows to train deeper networks. It is very effec-
tive when used with convolutional layers. The layer first normalizes its input as
follows: x̂ = (x − µ)/σ where µ and σ are vectors of means and standard devia-
tions, respectively, computed along the batch dimension (for each input channel).
Subsequently, the normalized input is transformed by learned parameters γ and
β to compensate for a possible loss of representational ability: y = γx̂ + β. See
the work by Wu and He [2018] who compare batch normalization with other
normalization layers.

Convolutional layer is a layer that consists of a set of trainable local convolu-
tional filters (sometimes called channels). The number of filters is a hyperparam-
eter. Every filter has the same size called kernel size, which is usually small, but
filters are moved (convolved) and applied to the whole input. This implies that
we need to specify also the stride with which we slide the filters over the input.
Finally, the last hyperparameter of a convolutional layer, called dilation, controls
the sparsity of filters. To be more specific, it inserts spaces between filter cells (so
in the case of one-dimensional convolutional layers, for example, a filter of size

10

3 is stretched by a dilation 2 so that it spans 5 input cells and the output is con-
nected with every other input cell). The calculations done by a one-dimensional
convolutional layer can be described by the following equation:

conv(I)i,c = bc +
∑
k,f

Ii·S+k,fWk,f,c

where I ∈ RL×F denotes an input of length L with F channels, W ∈ RK×F ×C is
a weight matrix where K is the kernel size and C is the number of output channels.
The stride is represented by S and b is a bias. Moreover, popular frameworks allow
us to group multiple convolutional layers with the same hyperparameters into
a single layer. This layer is called grouped convolutional layer and the included
separate convolutions are referred to as groups.

Cosine similarity loss is a loss function that is based on the cosine similarity
which is defined as: SIM(a, b) = (a⊤ ·b)/(∥a∥ ∥b∥) where a and b are input vectors.

Cross entropy loss is a loss function that is used for classification problems
with C classes. It requires a predicted distribution o over C classes and a one-hot
vector t with 1 in the position corresponding to the true class. The cross-entropy
loss is then: CE(t, o) = −∑C

i=1 tilog(oi).

Dropout is a technique used to prevent overfitting of neural networks. During
training, it randomly sets the outputs of a fraction (called dropout rate) of neurons
to zero. It can be viewed as a random sampling from an exponential number of
different networks. See Srivastava et al. [2014].

Embedding layer – Neural networks usually work with real numbers. Embed-
ding layers are trainable lookup tables that are used to convert characters or
words to numeric vectors. These layers can be trained in a way so that the simi-
larity of the resulting vectors reflects the semantic or syntactic similarity of input
words [Peters et al., 2018].

Fully connected layer is a basic type of layers used in neural networks. Neurons
in a fully connected layer are connected to all outputs of the previous layer. It
is an affine transformation, i.e., y = W ⊤x + b where W is a matrix of trainable
parameters and b is a trainable vector called bias.

Gated layer – The architecture of gated layers enables a regulation of infor-
mation flow. It is used in recurrent layers [Hochreiter and Schmidhuber, 1997]
or highway networks [Srivastava et al., 2015]. The layer makes use of a gat-
ing vector g. Given an input x, the output vector y is computed as follows:
y = g · x + (1 − g) · x. Note the pointwise multiplications.

Gradient – Training of neural networks is an optimization problem. It is usu-
ally done by gradient-based algorithms that use derivatives to update network
parameters (see the “Optimizer” entry). Gradients are calculated using the back-
propagation algorithm by applying the chain rule of differentiation starting from
network outputs and propagating the gradients backward. That is why neural
networks and loss functions (see the “Loss function” entry) have to be differen-
tiable with respect to weights.

Gradient clipping is a method used to prevent exploding gradients (i.e., ex-
cessively large gradients resulting in unstable learning) in very deep or recurrent

11

neural networks. It can be implemented as a simple normalization of gradients.
The normalization is done only when the L2 norm of a parameter vector exceeds
a certain threshold. See Pascanu et al. [2013].

GRU is a simplification of the LSTM [Cho et al., 2014]. In comparison with
the LSTM cell, it does not keep an internal state. At each step, it processes just
a hidden state (also called output vector) from the previous step ht−1 and an
input vector xt. The internal architecture of the GRU cell includes a reset gate
and an update gate. Updates done in a single step can be described as follows:

ut = σ(W uxt + Uuht−1 + bu)
rt = σ(W rxt + U rht−1 + br)

h̃t = tanh(W yxt + Uy(rt · ht−1) + by)
ht = ut · h̃t + (1 − ut) · h̃t−1

where ut, rt denote outputs of update and reset gates, respectively. W and U are
weight matrices and bias vectors are denoted by b.

Group normalization – See the “Batch normalization” entry. The group nor-
malization layer uses means µ and standard deviations σ along the channel di-
mension, which is divided into a few groups of equal size. This can be helpful
when a small batch size is used and the number of channels is greater than that
because, in this scenario, the batch statistics do not have to be very reliable. Wu
and He [2018] compare the group normalization with other normalization layers.

Highway network (layer) is an enhanced fully connected layer. It consists
of two parallel fully connected layers that transform the input of the highway
network. The first is followed by a sigmoid function (we denote its output by g)
and the second layer precedes an arbitrary non-linearity (we denote its output
by x̂). The output of the highway layer is then computed as: y = g ·x+(1−g) · x̂.
Note the pointwise multiplications. See Srivastava et al. [2015].

Learning rate – Training of neural networks is an optimization problem. Algo-
rithms used for it are called optimizers and they are usually controllable by a few
parameters. One of these parameters is called learning rate. It controls the step
size during the optimization. It is common to change the learning rate during
training, a policy of these changes is called the learning rate schedule.

Learning rate schedule – See the “Learning rate” entry. Some frequently
used schedules are, for example, the stepped learning rate decay (that decays the
learning rate every n training steps), the exponential learning rate decay (that
multiplies the learning rate by γ every training step), or the cyclic learning rate
policy [Smith, 2017].

Loss function – The process of finding suitable parameters of a neural network
is called training. It is reduced to an optimization problem that is solved by an
algorithm called optimizer. During optimization, the optimizer tries to minimize
a so-called loss function. In the context of neural networks, this function is a mea-
sure of the difference between expected outputs and actual outputs produced by
the trained network and it is often defined in such a way that the optimization
then corresponds to maximization of the likelihood of training data.

12

L1 loss is a loss function that measures the mean absolute error. For two input
vectors y and ŷ, both of length N , the loss is: L1(y, ŷ) = 1

N

∑N
i=0 |yi − ŷi|.

LSTM is a type of a recurrent neural network introduced by Hochreiter and
Schmidhuber [1997]. The LSTM at a particular time step t keeps an internal
state ct and processes an input vector xt and a hidden state (also called output
vector) from the previous step ht−1. The internal architecture of the LSTM cell
includes an input gate, an output gate, and a forget gate. Updates done in a single
step can be described by the following equations:

it = σ(W ixt + U iht−1 + bi)
ft = σ(W fxt + U fht−1 + bf)
ot = σ(W oxt + U oht−1 + bo)

ct = ft · ct−1 + it · tanh(W yxt + Uyht−1 + by)
ht = ot · tanh(ct)

where it, ot, and ft denote outputs of input, output, and forget gates, respectively.
W and U are weight matrices and bias vectors are denoted by b.

MSE loss is a loss function that measures the mean squared error. For two input
vectors y and ŷ, both of length N , the loss is: MSE(y, ŷ) = 1

N

∑N
i=0(yi − ŷi)2.

Optimizer – See “Learning rate” and “Gradient” entries. Training of neural
network’s parameters is usually based on a gradient-based optimization. The op-
timizer is given gradients and updates parameters. However, updates based on
whole training datasets are inefficient and intractable. Instead, so-called mini-
batches are used. Training data are divided into random and relatively small
groups. The updates and gradient computations are then done for each mini-
batch in training data. Commonly used optimizers are, for example, Stochastic
Gradient Descent (with momentum, see Sutskever et al. [2013]), Adam [Kingma
and Ba, 2015], or more recent AdamW [Loshchilov and Hutter, 2019]. The
vanilla gradient descent optimizer can be described by the following equation:
θ = θ − η · ∇θJ(θ; xi:i+B; yi:i+B) where θ stands for a parameter of the network,
η is the learning rate and ∇θJ denotes gradients (calculated from a mini-batch
that contains examples with indices from i to i+B) with respect to the parameter
θ and a loss function J .

Pooling layer is similar to a convolutional layer that implements a pooling
technique, i.e., a method that performs a fixed pooling operation on a particular
input. In comparison with an ordinary convolutional layer, it does not compute
a weighted combination of its inputs, instead, it takes, for example, the maximal
input value or the average of input values. These layers are usually used in image
recognition tasks together with convolutional layers to support their translational
invariance. The name global pooling layer refers to a layer that has a notion about
the whole input (i.e., the kernel spans the whole input).

Recurrent neural network (RNN) is a type of a neural network used for pro-
cessing of sequential data (possibly of variable length). A typical RNN processes
input sequences sequentially. At each time step, it takes the current input and
the previous hidden state and outputs a new hidden state. It is called recurrent
because all the time steps apply the same network parameters (but to different in-

13

puts). Bidirectional RNNs contain two RNNs (forward and backward) processing
the input in different directions. Outputs of the RNNs are then combined (con-
catenated). Note that RNNs usually suffer from the exploding gradient problem
and thus are combined with teacher forcing (see the “Teacher forcing” entry) or
gradient clipping (see the “Gradient clipping” entry). See Pascanu et al. [2013].

Residual connection is a link that bypasses a layer or a group of layers of a neu-
ral network. At the end of the bypass, the modified and the residual signals are
usually summed. Residual connections allow the composition of very deep (con-
volutional) neural networks because they clear the way for the backpropagation
of gradients and avoid their vanishing [He et al., 2016].

Sequence-to-sequence is a general term used for a family of methods that con-
vert input sequences into other sequences [Sutskever et al., 2014]. A sequence-to-
sequence network architecture consists of an encoder, a decoder, and an attention
mechanism. The encoder turns input sequences into encoded sequences that are
subsequently read by the decoder using the attention mechanism. The decoder
generates output sequences. In a very basic setting, the attention mechanism is
omitted and the last encoder output is used for the initialization of the decoder.

Skip connection – See the “Residual connection” entry. These terms are inter-
changeable.

Teacher forcing is a technique used for training of recurrent neural networks
(see the “Recurrent neural network” entry). At each training step, the ground
truth output from a prior time step is used as the current input instead of the
output from the previous step. See Pascanu et al. [2013].

Variational autoencoder – An autoencoder is a neural network whose goal
is to predict the input itself. The input is first encoded into a so-called latent
space with a lower dimension. Afterward, the original input is reconstructed from
a point in the latent space. The network is thus forced to learn a compressed
representation of the input. Variational autoencoders predict a distribution (such
as the Gaussian distribution parameterized by its mean and variance) in the latent
space instead of a single point, then sample from the distribution and use the
obtained point to generate the original input. See Kingma and Welling [2014].

Weight decay – It is a term in the weight update rule of optimizers that causes
weights to exponentially decay (if no other update is done). For the stochastic
gradient descent optimizer, the weight decay is equivalent to the L2 regularization
which is a basic machine learning regularization technique that penalizes higher
parameter values. See Loshchilov and Hutter [2019].

Zoneout – It is a regularization technique used for recurrent neural networks
(see the “Recurrent neural network” and “Dropout” entries). The dropout regu-
larization does not work well when applied to RNN states because it can lead to
a loss of important information through time. The zoneout, on the other hand,
preserves a fraction (called zoneout rate) of states from the previous step and
updates the remaining states with new values [Krueger et al., 2018].

14

Chapter 2

Speech Synthesis

In a general sense of the term, speech synthesis is a discipline that aims at a con-
trollable production of an artificial human voice. It includes various subfields, for
example, speech reconstruction or more importantly text-to-speech (TTS). Text-
to-speech, as the name suggests, concerns the automatic conversion of a written
text to a speech audio signal. We use the terms speech synthesis and text-to-
speech interchangeably further in this work.

A typical text-to-speech pipeline [Taylor, 2009] is divided into these steps:

• Text analysis – performing segmentation and text normalization, i.e., sub-
stitution of numbers, abbreviations, dates, etc. into spelled-out forms.

• Linguistic analysis – obtaining a linguistic specification from the input,
i.e., examining the prosody pattern, converting input graphemes (basic
units of writing systems such as letters, logograms, numbers, punctuation
marks, etc.) into phonemes (fundamental units of sound that distinguish
one word from another in a particular language; note that the relation be-
tween graphemes and phonemes varies greatly from language to language),
and making decisions about intonation, stress, and phoneme durations.

• Waveform generation – producing a sound wave based on the output of
linguistic analysis.

Text-to-speech has a one-to-many character because people speak different voices,
accents, and an input text can have various realizations based on speaker inten-
tions. That is why some TTS systems accept the characteristics of the target
speaker or even a description of the desired prosody (for example, using the
speech synthesis markup language).

Sometimes, speech synthesis systems omit the text analysis subtask completely.
It is often rule-based and highly language-dependent. Instead, they reckon on
a clean input with a suitable segmentation and without any unfavorable symbols.

The remaining part of this chapter summarizes the evolution of speech synthesis
(Section 2.1), but more importantly, it discusses current influential end-to-end
models based on neural networks (Section 2.2).

15

2.1 History

The first attempts to build a speech synthesis system worthy of the name were
made by Wolfgang von Kempelen at the turn of the eighteen and the nineteen
century [Dudley and Tarnoczy, 1950]. The structure of his man-powered speaking
machine tried to imitate the human vocal tract – it contained holes acting as nos-
trils, a rubber cone representing the mouth, etc. Even though it is reasonable to
think that speech synthesis systems should somehow follow the structure of vocal
organs, the past decades brought to us more serious machines and algorithms for
speech synthesis. Two main principles stood out – concatenative and parametric
methods [King, 2011].

2.1.1 Concatenative Synthesis

Concatenative or example-based systems use a database of recorded speech units
[Campbell, 1995], e.g., diphones spanning two halves of successive phonemes.
During synthesis, these pieces are selected with respect to an evaluation function
and concatenated to produce the desired speech. However, the process of retrieval
or selection is complicated because the system has to search for the best units,
possibly slightly mismatched in terms of pitch, speed, etc.

The advantage of the concatenative synthesis is that the pieces are natural-
sounding. Unfortunately, the segmentation and concatenation are hard and often
produce audible glitches even if adjustment and smoothing of the units are per-
formed. Another drawback of this approach is that it requires a high-quality
database of speech segments with suitable variations. This implies a limited scal-
ability of this method. For example, a change of the speaker’s voice or the source
language would require a completely new database.

2.1.2 Statistical Parametric Speech Synthesis

Another method called statistical parametric speech synthesis (SPSS) is a model-
based approach [Zen et al., 2009]. Instead of storing a database of speech, it
stores a trained statistical parametric model. The main part of such models
is an acoustic model that tries to predict or generate parameters of the output
audio wave given some linguistic features or rather a specification. The generated
parameters are subsequently used by a vocoder to reconstruct the speech signal
(see Figure 2.1). However, the vocoder can be a non-statistical external module.
The reason why the acoustic model usually predicts just features is that predicting
a waveform directly at a high sample rate might be difficult. Typically used
acoustic features are MFCCs with F0 (with rates of change such as the first and
second derivatives), or spectrograms.

The acoustic model can be represented by context-dependent Hidden Markov
Models (the whole model is constructed by concatenating models corresponding to
a particular context) or simple neural networks [Zen, 2015]. The model commonly
used in SPSS also includes, besides the acoustic model, an explicit duration model.
This predicts the number of frames to be generated by each state of the model.

16

Figure 2.1: Diagram of a typical SPSS model. The red rectangle depicts a frontend
that takes the text input and extracts various linguistic features, which are then
passed into the acoustic model (the blue rectangle). The acoustic model creates
acoustic features suitable for the vocoder that synthesizes a final audible waveform.

A decision tree context clustering is often used to control model complexity (which
may quickly grow if separate models are used for different contexts).

In comparison with concatenative systems, statistical parametric speech synthesis
is more flexible and does not require a huge amount of high-quality and phonet-
ically balanced data. On the other hand, the SPSS often struggles with over-
smoothing, i.e., audio signal details are removed or averaged.

2.2 Deep Neural Systems

The two solid methods outlined in the previous section can produce high-quality
speech, make it possible to control some characteristics of the synthesized speech
and offer guarantees which are necessary for production use. Recent neural mod-
els build on them and enable synthesizing more flexible and natural-sounding
speech, even in an end-to-end manner. We are going to describe the most influ-
ential models and more importantly models related to our experiments in detail
in Sections 2.2.1–2.2.6. At the end of this section, we briefly mention other inter-
esting models in Section 2.2.7.

2.2.1 WaveNet

In 2016, van den Oord et al. [2016] introduced a neural generative text-to-speech
model called WaveNet. It was a real breakthrough because WaveNet significantly
outperformed previous state-of-the-art parametric and concatenative systems in
terms of output quality. The model converts linguistic features into audio wave-
forms, so it replaces both the acoustic model and the vocoder known from the
classical SPSS.

Let us consider a waveform x = {x1, ..., xT }. The joint probability of the wave-
form or, better said, of samples of the waveform can be factorized as follows:

p(x) =
T∏

t=1
p(xt|x1, ..., xt−1)

17

WaveNet models the probabilities p(xt|x1, ..., xt−1). The key idea behind the
model is the usage of many convolutional layers.1 Their advantage over recurrent
layers is that they are more easily trainable and that they can be more easily
parallelized (it implies faster training). Note that the first convolutional layer of
WaveNet is causal, which means that its input is shifted by a frame so that the
model cannot see into the future during training.

However, to make the whole convolutional setup working and to model the prob-
ability of xt properly, the model needs to take into account a sufficiently large
receptive field (i.e., hundreds of milliseconds). One way to enlarge the context
is to use dilated convolutions.1 Stacking of dilated layers causes an exponential
grow of the receptive field (WaveNet doubles the dilation at each consecutive
layer). To support and speed up convergence of the whole model, residual and
skip connections are used.2 See Figure 2.2, which symbolically describes the whole
architecture.

Figure 2.2: Illustration of WaveNet with two stacks or dilation cycles (red and
blue), each having three dilated convolutional layers where the k-th layer of a stack
has dilation rate 2k. The layers include two convolutions with the kernel size 1,
a gating mechanism, a residual connection, and a skip connection. The output of
each layer is the input to the next layer and the output of the last layer of a stack
is the input to the first layer in the next stack. Skip connections are summed
and the resulting value is used for predicting the next sample (green rectangle).
Circles depict pointwise multiplications or summations and other colorless boxes
visualize activation functions.

Let us now describe what the final prediction of xt+1 is. The WaveNet model
predicts a probability distribution over the 256 possible values of an 8-bit audio
sample, quantized using the µ-law companding transformation (see Section 1.1).
The concrete sample value is then obtained by sampling the distribution.

We have described the basic setting of WaveNet, but we would like to produce
waveforms given linguistic features. To adapt WaveNet to this task, the authors
upsample the input features to a higher sampling rate. This upsampled signal is
then transformed in each convolutional layer using a fully connected layer3 and
summed to the output of the dilated convolution (before an activation function).

1See “Convolutional layer” in the Glossary.
2See “Skip connection” in the Glossary.
3See “Fully connected layer” in the Glossary.

18

The way in which WaveNet models the probability implies that all samples can
be processed in parallel during training. During inference, the model needs to
obtain all the samples x1, ..., xt to generate the next sample xt+1, so the model
is sequential and autoregressive. This is the main drawback of the WaveNet
architecture because the number of samples to be generated is relatively large
(even for lower sampling rates). To sum it up, even though the training is fast
and parallel, the inference is much slower than real-time (it takes minutes of GPU
time to generate a few seconds of speech, so it is not very practical).

2.2.2 Deep Voice

Shortly after the unveiling of WaveNet, Arik et al. [2017] came up with a new
model called Deep Voice. This was the first attempt at a fully end-to-end TTS
system. Moreover, the authors managed to speed up the WaveNet model de-
scribed in Section 2.2.1 and reached faster-than-real-time inference times. Deep
Voice is inspired by traditional TTS pipelines and has a very similar structure,
but it removes any handcrafted or hard-to-obtain features. During training, in
addition to the input text transcriptions, it requires only phonemes with stress an-
notations, phoneme durations, and the fundamental frequency. Plain graphemes
are the only input required during inference. Deep Voice consists of the following
modules (see Figure 2.3):

• Grapheme-to-phoneme – this module predicts phonemes from input
graphemes. It follows the encoder-decoder architecture4 based on GRUs5.

• Segmentation – this module is used to locate phoneme boundaries in train-
ing audio recordings and follows architectures used in speech recognition.
The input audio is featurized by MFCCs (see Section 1.1.3).

• Phoneme duration and fundamental frequency – this module predicts
duration and F0 for each input phoneme. It consists of a few fully connected
layers that are followed by a single unidirectional GRU and an output fully
connected layer.

• Audio synthesis – to produce waveforms, Deep Voice uses the WaveNet
model conditioned on phonemes with durations and F0 profiles.

Please refer to the original paper [Arik et al., 2017] for more details about the
architecture and parameters of the mentioned modules.

As mentioned above, Deep Voice uses an optimized version of WaveNet with
faster-than-real-time inference times. This fast performance was achieved by
parallelization, a careful choice of WaveNet’s parameters, and subdivision of layers
so that the whole model is cache-friendly and nothing has to be recalculated.

The second version of the model, called Deep Voice 2, extends the original version
to enable multi-speaker speech synthesis [Gibiansky et al., 2017]. The third ver-
sion of Deep Voice [Ping et al., 2018] follows Tacotron (which will be described in

4See “Sequence-to-sequence” in the Glossary.
5See “GRU” in the Glossary.

19

Figure 2.3: Diagram showing interactions of modules of Deep Voice. Blue rect-
angles are trainable neural networks used during training and inference, the red
rectangle depicts a trainable network used just during the training phase. Gray
rectangles are non-trainable parts of the pipeline. Solid lines depict forward pass
through the network and dashed lines mark supervision signals used by individual
modules during training. Note that the duration and F0 predictions are done by
a shared network even though they are decoupled in this illustration.

the next section) and adapts a fully convolutional attention-based6 sequence-to-
sequence architecture. However, the model does not contain any groundbreaking
ideas and our experiments were focused on Tacotron.

2.2.3 Tacotron 1

Remember the diagram in Figure 2.1. WaveNet merged the acoustic model and
the vocoder into a single neural network. Tacotron [Wang et al., 2017], on the
other hand, substitutes both the frontend (which extracts linguistic and contex-
tual features from the input text) and the acoustic model. Unlike WaveNet, the
only input expected by Tacotron is a raw text. Tacotron does not need any fea-
ture engineering, domain expertise, or expensive extraction of features, and thus,
together with a vocoder, it constitutes a fully end-to-end system.

Contrary to Deep Voice, Tacotron does not require phoneme dictionaries or
phoneme-level alignments for training. It does not even need a complex vocoder
because Tacotron can output detailed linear spectrograms. A popular vocoder
that works with spectrograms is called the Griffin-Lim algorithm [Griffin and Lim,
1984]. It is a non-trainable algorithm that recovers complex-valued spectrograms
using an iterative process that makes use of the pseudo-inverse STFT.

It is important to realize the advantages of integrated end-to-end systems without
traditional components. According to Wang et al. [2017], the advantages over
multi-stage systems are:

• Fast and easy adaptation to new data because no laborious feature
engineering is needed.

• Easier conditioning on various attributes like speaker identity, language,
or sentiment.

• Robustness because errors of components in multi-stage systems can be
propagated and added.

6See “Attention mechanism” in the Glossary.

20

We also would like to note that we are putting less prior knowledge into an inte-
grated system such as Tacotron, so the model can learn its own way of reasoning
and is not restricted by human notions.

Wang et al. [2017] compared Tacotron to strong concatenative and parametric
baselines in human evaluation, where it was able to outperform the parametric
baseline. However, the concatenative system was rated better, probably because
of the Griffin-Lim vocoder that often produces audible artifacts.

The architecture of Tacotron (see Figure 2.4) follows the general paradigm of
sequence-to-sequence architecture with attention. This means that it can be de-
coupled into an encoder which transforms input texts of some length into another
representation of the same length, and a decoder which follow particular positions
in the encoder output using the attention mechanism and produces a final output
sequence of a different length. The input sequence is expected to be a raw text
and the output sequence consists of frames of a linear spectrogram with logarith-
mic magnitudes. Wang et al. [2017] use frames spanning 50 milliseconds with
a frameshift of 12.5 milliseconds and with 2048 frequency bands.

Figure 2.4: Visualization of Tacotron. “FC” stands for a fully connected layer.
The red dashed rectangle depicts the encoder with an embedding layer. The blue
area describes a single step of the decoder (note the oriented cycle – the dashed line
connects the result of the previous step with computations of the next step). The
attention module is represented by the green rectangle (circles represent pointwise
summation or multiplication). The query coming from the decoder has to be
expanded to match the length of the input text. The post-net which transforms
stacked frames produced by the decoder is shown in orange color. The final output
spectrogram can be passed into a vocoder.

In the following, we describe the model components in detail.

Throughout the model, a network module called CBGH is used repeatedly. An
input sequence of the module is fed into a bank of one-dimensional convolutions.
The bank of size k consists of k convolutional layers with kernels of size 1, . . . , k.
These convolutional layers should model 1 to k input tokens. Their outputs are
stacked and max-pooled7 along the time dimension. Next, the sequence is passed

7See “Pooling layer” in the Glossary

21

through a few one-dimensional convolutions and summed with the original input
sequence through a residual connection. The summation is passed into a stack of
four highway layers8 and then it is fed to a final bidirectional GRU layer9 with
128 units. The convolutional layers are regularized using batch normalization10.
It is not hard to see that this module is somewhat cumbersome and complex and
that is why it was completely removed in Tacotron 2 (see Section 2.2.4).

The encoder consists of a character embedding11 of size 256, a pre-net module
and a final CBGH module with output size 128. The pre-net module includes just
two simple fully connected layers with ReLU activations and dropout layers12.

Tacotron uses content-based attention, i.e., the Bahdanau attention [Bahdanau
et al., 2015]. However, this type of attention is not location-based and thus does
not take into account the history of previously attended positions and also does
not take advantage of the fact that reading has a monotonous character. That is
why Tacotron 1 sometimes tends to jump to other positions in the input text. It
results in skipping words or repetition of some parts of the text. These problems
were successfully fixed in the second version (see Section 2.2.4).

The decoder has two GRU layers of size 256. The first layer produces queries to
the attention mechanism and the second layer acts as a generator and accepts
the output of the first layer together with a context vector returned by attention.
The output of the generator layer is passed into a fully connected layer which
predicts frames of a mel spectrogram with 80 frequency bins. Wang et al. [2017]
report that it is crucial to emit two frames per decoder step because this speeds
up convergence and results in a more stable attention.

The first decoder step is conditioned on a zero frame and subsequent steps are
conditioned on the last predicted frame (or ground-truth frame during training,
this method is called teacher forcing13. In fact, before feeding an output frame
into the next decoder step, it is passed through a pre-net with two fully connected
layers with ReLU activations and dropout layers. Wang et al. [2017] state that the
pre-net acts as an information bottleneck and the dropout is extremely important
for generalization.

The described sequence-to-sequence part of Tacotron outputs mel spectrograms.
It is possible to invert them into waveforms using the Griffin-Lim algorithm,
but this would produce salient artifacts. The purpose of the post-net is to turn
mel spectrograms into a representation that works better with the Griffin-Lim
vocoder. That is why Tacotron includes the so-called post-net that consists of
a CBHG module that reconstructs linear spectrograms from the generated ones.

8See “Highway network” in the Glossary
9See “Recurrent neural network” in the Glossary

10See “Batch normalization” in the Glossary
11See “Embedding layer” in the Glossary
12See “Dropout” in the Glossary
13See “Teacher forcing” in the Glossary

22

2.2.4 Tacotron 2

The main drawback of Tacotron is the need for the Griffin-Lim vocoder. However,
this imperfection was fixed in the second version [Shen et al., 2018]. It simplifies
Tacotron 2 and modifies WaveNet so that it can synthesize waveforms from mel
spectrograms. The spectrograms have the same properties as described in Sec-
tion 2.2.3, i.e., the STFT uses the Hann window function (see Section 1.1.2), the
frame size is 50 milliseconds, and the frame hop is equal to 12.5 milliseconds.

Simplifications

Tacotron 2 does not have any CBGH modules and the character embedding size
and encoder output size were doubled to 512. The encoder includes three one-
dimensional convolutional layers with kernel size 5. Each of these layers is followed
by a batch normalization layer, a ReLU activation, and a dropout layer. Finally,
a bidirectional LSTM layer14 of size 512 comes after the final convolutional layer.

The original Bahdanau attention was enhanced using a so-called cumulative
location-sensitive attention [Chorowski et al., 2015]. This type of attention mech-
anism uses cumulative attention weights as an additional feature and can be
described using the following equations:

ei
j = wT tanh(Whi−1 + V mj + U [F ∗ σi−1]j + b)

αi = softmax(ei)
σi = σi−1 + αi

where αi ∈ Rn is a vector of attention weights at the i-th step of the decoder,
∗ is a convolution operator, σi ∈ Rn denotes the cumulative weights at the i-th
step, and U , F are weight matrices (for a linear projection and a one-dimensional
convolution, respectively). Other symbols follow the notation from the Glossary,
i.e., m ∈ RL×n denotes the encoded input, hi ∈ Rn is the hidden state of the
decoder at the i-th step, W ∈ RA×n and V ∈ RA×n are weight matrices, b ∈ RA

is a bias, and w ∈ RA is a trainable vector. This attention type encourages the
model to move forward consistently and should mitigate certain shortcomings
of the original Tacotron (word skipping and repetition). The convolution that
extracts features for the attention mechanism has a kernel of size 31 and 32 filters.

GRU layers of the decoder are replaced with larger LSTM layers with 1024 units.
The LSTM layers are regularized using zoneout layers15. The pre-net is un-
changed. The only difference is that Shen et al. [2018] advise leaving the pre-net
dropout enabled even during inference to bring more variation into outputs. How-
ever, the exact architecture of the decoder is not completely clear from the original
description. It says:

The pre-net output and attention context vector are concatenated and
passed through a stack of 2 uni-directional LSTM layers with 1024 units.

14See “LSTM” in the Glossary
15See “Zoneout” in the Glossary

23

Unfortunately, Shen et al. [2018] do not mention which part of the decoder pro-
duces queries to the attention mechanism. We conclude that it is possible to use
the same setup as in the first version of Tacotron (Section 2.2.3).

Contrary to the first version, Tacotron 2 generates just a single spectrogram
frame per decoder step. It predicts the frame from a concatenation of the context
vector and the output of the last LSTM layer. In parallel to this prediction, the
concatenation is also projected into a scalar that is passed through a sigmoid
function and decides when to stop the generation. This stop token is very useful
during inference.

The post-net’s CBGH module is also replaced with five one-dimensional convo-
lutional layers with a kernel of size 5 followed by batch normalization layers and
tanh activations (except for the last layer). The whole post-net is bypassed with
a residual connection.

Since Tacotron 2 (without WaveNet) is directly used in our own experiments,
we further specify the architecture hyperparameters, implementation details, and
training procedure in Chapter 6. The WaveNet vocoder used by Shen et al. [2018]
is described in the following.

WaveNet

The architecture of Tacotron 2’s WaveNet vocoder follows the architecture de-
scribed in Section 2.2.1. It contains 24 layers in four dilation cycles and two
upsampling layers that enlarge the input spectrogram to a higher sampling rate.
Instead of predicting a simple distribution (which is sampled during inference) of
the quantized sample values, this version of WaveNet predicts a ten-component
mixture of logistic distributions. So at the end of the forward pass, there are linear
layers predicting a mean, a log scale, and a mixture weight for each component.

Tacotron 2 with a WaveNet vocoder is very slow during inference and even train-
ing does not seem to be trivial. The authors trained WaveNet using 32 GPUs
with distributed mini-batches16 of size 128.

2.2.5 WaveRNN

In our experiments (described in Chapter 6), we replaced the WaveNet vocoder
with a model based on a single-layer recurrent neural network called WaveRNN
[Kalchbrenner et al., 2018]. It still matches the quality of outputs produced by
WaveNet while mitigating the problems associated with sequential models (such
as slow inference).

WaveRNN uses a recurrent layer with a cell that is based on the architecture of
GRU17. The original GRU was modified in a way that allows a fusion of certain
matrix multiplications. Another change allows splitting the cell into two inde-
pendent parts for predicting fine and coarse bits of samples. The WaveRNN cell

16See “Optimizer” in the Glossary
17See “GRU” in the Glossary

24

can be described as follows:

xt = [ct−1, ft−1, ct]
ut = σ(W u ⊙ xt + Uuht−1 + bu)
rt = σ(W r ⊙ xt + U rht−1 + br)

h̃t = tanh(rt · Uyht−1 + W y ∗ xt + by)
ht = ut · h̃t + (1 − ut) · h̃t−1

where ⊙ denotes a masked matrix multiplication that handles the coarse and fine
parts. Compare the equation of the reset gate rt with the definition in Glossary.
Notice that Uy, U z, and U r can now be concatenated for a faster computation,
contrary to the original GRU. To predict the resulting sample probability, the
output vector ht is split into two parts which are passed through a fully connected
layer with a ReLU activation followed by one more fully connected layer and a
softmax layer.

The tips and tricks suggested by Kalchbrenner et al. [2018] for reduction of
sampling-time requirements include:

• Reduction of the number of operations per sample – sampling using
a single-layer WaveRNN requires five sequential matrix-vector products, but
WaveNet has to perform tens of matrix-vector products per sample.

• Reduction of a launching overhead for individual operations – this
can be done by implementing custom GPU operations. Using this tech-
nique, authors of the WaveRNN model managed to sample high quality
24 kHz audio four times faster than real time. Their best WaveNet runs
around three times slower than real time.

• Reduction of the total number of parameters in the network –
Kalchbrenner et al. [2018] used a weight-pruning technique and sparsified
the large RNN. The resulting network with a sparsity level greater than
96% significantly outperformed the original dense version.

• Subscaling – samples are split into B interleaving sub-tensors with a fre-
quency or scale that is B times smaller. It means that all (Bi+s)-th samples
for a particular 0 ≤ s < B and for all i ≥ 0 are in the same sub-tensor.
The joint probability of samples is then reformulated as:

p(x) =
B∏

s=0

|x|/B∏
i=0

p(xBi+s|xBj+s for j < i, xBk+z for z < s, k ≥ 0)

It means that the generation of x can be done in parallel without breaking
any local dependencies. Subscaling alone, even without any other speedups,
allows sampling in real time.

Kalchbrenner et al. [2018] showed that they can sample in real time even on
a mobile phone CPU using a combination of methods sketched above. Further
details of these techniques are out of the scope of this work.

25

2.2.6 Deep Convolutional TTS

The previous section showed that the usage of recurrent neural networks for
modeling of sequential data brings favorable results. On the other hand, Deep
Convolutional Text-to-Speech (DCTTS) [Tachibana et al., 2017] offers a fully-
convolutional alternative to the Tacotron model. The convolutional architecture
results in faster training times and brings an ability to fully train a system pro-
ducing intelligible speech overnight on an ordinary GPU.

We briefly describe interesting ideas introduced in DCTTS because we used some
of them in our implementation of Tacotron (see Chapter 6).

The architecture of DCTTS consists of four components: text encoder, audio
encoder, audio decoder (with attention) and super-resolution network. The com-
position of the network is similar to Tacotron (see Section 2.2.3). At first, the text
encoder extracts key and value matrices K, V and the audio encoder converts the
target spectrogram (or its already generated part during inference) using causal
convolutions to a query matrix Q. The attention is then formulated as:

A = softmax
(

KT Q√
d

)

where d is the number of channels (in other words, the size of the last dimension,
i.e., not the temporal dimension) of Q, K, and V . Subsequently, the matrix
R = V A is concatenated with Q and passed through the audio decoder. The
decoder produces a coarse spectrogram (or a single coarse frame during infer-
ence). The training target of the coarse spectrogram is the spectrogram obtained
by picking every fourth frame of the real ground-truth spectrogram. This inter-
mediate representation is then upscaled into full temporal resolution using the
super-resolution network.

All the modules use convolutional layers, possibly with ReLU activations, or
convolutional highway layers with various parameters.

The guided attention proposed by Tachibana et al. [2017] incorporates more prior
knowledge into the attention mechanism. There is a rough correspondence of the
order of input text characters and output audio segments. It can be assumed
that reading has a nearly linear tempo. That is why DCTTS uses an additional
loss term called guided attention loss. It constrains the attention matrix to be
roughly diagonal:

L(A) = E [AW]

where

Wn,t = 1 − exp

⎛⎜⎝−

(
n
N

− t
T

)2

2g2

⎞⎟⎠
and T is the total number of decoder time steps and N is the length of the input
text; g controls strictness of the diagonal.

26

2.2.7 Others

There are a plenty of other interesting text-to-speech models. We do not use them
in our experiments, but for the sake of completeness, we would like to mention
some of them:

• WaveGlow [Prenger et al., 2019] – a non-autoregressive (i.e., fully paral-
lelizable) alternative to WaveNet that makes use of normalizing flows and
can produce high-quality audio at very high sampling rates. It has an
official open-source implementation, but in our experiments, we preferred
WaveRNN because because it has lower computational requirements.

• GAN-TTS [Bińkowski et al., 2020] – yet another non-autoregressive alter-
native to WaveNet. It is based on a generative adversarial network gener-
ating raw waveforms given a text with linguistic features.

• Voice Loop [Taigman et al., 2018] – an approach to text-to-speech com-
pletely different from other models described here. It is inspired by a con-
cept of human memory called the phonological loop [Baddeley, 1984], i.e.,
it has a shifting buffer (its oldest item is at each step replaced by a new
context vector) that is used for generating acoustic parameters.

• MelNet [Vasquez and Lewis, 2019] – a model generating spectrograms
with an ability of modeling longer time dependencies. It is based on many
recurrent layers that generate spectrograms in multiple tiers. The first one
dictates high-level structure and subsequent tiers add fine-grained details.
However, the results reported by Vasquez and Lewis [2019] have not been
replicated yet.

27

Chapter 3

Evaluation Metrics

This chapter is devoted to common objective and subjective metrics and method-
ologies for performance evaluation of text-to-speech models. Direct comparison
of text-to-speech models is difficult, similarly to a comparison of text or image
generation models.

There is no objective metric that would measure TTS quality directly; instead,
surrogate metric need to be used where correlation with TTS quality is not guar-
anteed. On the other hand, evaluation results with subjective metrics may highly
depend on subjective preferences.

In the following, we list two objective metrics – mel cepstral distortion (see Sec-
tion 3.1) and character error rate (see Section 3.2), then describe two methods
for subjective evaluation – mean opinion score (see Section 3.3) and MUSHRA
(see Section 3.4). We also mention how the individual metrics are relevant to our
experiments in Chapter 6.

3.1 Mel Cepstral Distortion

The first objective metric we would like to mention is called mel cepstral distortion
(MCD). It is based on a comparison of MFCCs obtained from reference and
generated mel spectrograms [Kubichek, 1993]. It reflects the differences between
prosody, pronunciation, voice similarity, etc., of speech recordings that correspond
to the two spectrograms. It is defined as:

MCD(c, c′) = C · 1
T

T −1∑
t=0

√∑K

k=1 (ct,k − c′
t,k)2

where ct,k, c′
t,k denote the k-th mel frequency cepstral coefficient of the t-th frame

of the predicted and reference recordings. C is a normalization constant and T is
the total number of frames in the recording. The squared differences are summed
over the first K coefficients except for the first one (see Section 1.1.2, the first
coefficient carries just information about the average power of the input signal).

However, the above definition expects that the two spectrograms have the same
number of frames, which is usually not true. This problem can be solved by
padding the shorter spectrogram or cutting the longer one, but a more complex
method utilizing dynamic time warping (DTW) will often provide more accurate
comparison of different systems. Dynamic time warping is a pattern-matching

28

algorithm [Brown and Rabiner, 1982] that can stretch or shrink some parts of
input series in order to optimize a metric (i.e., slowing down or speeding up
certain parts of the audio to maximize MCD in our case).

Reported values of MCD vary in text-to-speech literature [Skerry-Ryan et al.,
2018, Chen et al., 2019], i.e. even the same model with the same outputs could
obtain different MCD values. This is because the computation of MCD relies on
MFCCs, but the computation of MFCCs is implemented differently across popu-
lar libraries (e.g., Librosa [McFee et al., 2015] or Matlab). The implementations
mainly differ in the type of normalization used.

In Chapter 6, we refer to MCD values obtained from MFCCs computed using
default parameters of Librosa and with a unit normalization constant C. We also
use DTW to overcome the problem with spectrogram lengths. We use this metric
mainly to monitor the training progress because it can be computed easily and
reflects the speech abilities more properly than typical loss functions1 (such as
the mean square error of generated spectrograms).

3.2 Character Error Rate

Some works make use of models for automatic speech recognition in order to ob-
jectively measure pronunciation accuracy or stability of text-to-speech systems
(Battenberg et al. [2019], Lee et al. [2018]). Generated waveforms are sent to
a speech recognition engine that outputs transcriptions. These are then com-
pared to ground-truth texts that were originally passed into the TTS model. The
comparison itself is done on the character level using the character error rate
(CER) metric [Soukoreff and MacKenzie, 2001]. The CER of two strings is their
minimum string distance (i.e., the minimal number of operations – substitutions,
insertions, and deletions – needed to transform one string into the other) divided
by the length of the longer one.

There might be difficulties with the calculation of the CER of logographic scripts,
such as Chinese or Japanese. Text-to-speech models for these languages often use
romanized forms of input texts, but ASR systems output native characters. It is
possible to compare the native symbols directly, but we should not be surprised
by higher CER values in comparison to sentences using alphabetic scripts. The
alternative is to romanize the ASR output and compare the forms using Latin
characters. However, conversion errors can compound.

Of course, the character error rate in the context of text-to-speech is not an
ideal measure as it depends on the capabilities of the particular ASR module
and the quality of synthesized waveforms. It does not depend just on correct
pronunciation – artifacts produced by a lower-quality vocoder such as Griffin-
Lim [Griffin and Lim, 1984] can cause ASR errors even though spectrograms
produced by the system being evaluated are perfect. On the other hand, the
ASR engine can guess some characters which are not pronounced at all.

Despite all these facts, we use this metric extensively in our experiments for
1See “Loss function” in the Glossary.

29

evaluation and comparison of our models as finding tens of native speakers for
each of ten languages who are willing to rate tens of recordings is very difficult
and expensive. In the experiments in Chapter 6, we use the ASR model available
at Google Cloud Platform.2 In the case of Chinese and Japanese, we compare
their native characters.

3.3 Mean Opinion Score

In current text-to-speech literature, it is very common to report the so-called
mean opinion score (MOS). It was originally used to evaluate phone call quality
and it was defined as “The mean of opinion scores”. Opinion score was further
specified as “The value on a predefined scale that a subject assigns to his opinion
of the performance of the telephone transmission system used either for conver-
sation or for listening to spoken material” [ITU-T, 2016a]. Note that the mean
is a simple arithmetic mean. The recommendation also precisely describes the
methodology of data collection (room conditions, loudness, etc.). Another stan-
dard that describes quality assessment for multimedia applications introduces
several scales compatible with the mean opinion score [ITU-T, 2008]:

• Five-point scale from 1 to 5 with labels Bad, Poor, Fair, Good, Excel-
lent, respectively. The labels should indicate quality and should support
agreement across users. However, it is questionable whether the labels are
perceived equidistant.

• Finer five-point scale with the possibility of selecting an intermediate
rating. The original five-point scale described above can be, for example,
refined to a nine-grade or an eleven-grade scale.

• Quasi-continuous scale that only has labels for the beginning (Bad) and
the end (Excellent). Other labels are omitted to reduce the bias caused by
their interpretation.

In current text-to-speech literature, MOS is implemented loosely and does not
precisely follow the standards. For example, Park and Mulc [2019] redefine the
scale using different five labels, Shen et al. [2018] use a finer discrete scale from
1 to 5 with 0.5 increments, or Skerry-Ryan et al. [2018] use a seven-grade scale
with custom labels and reference recordings. Evaluation conditions and data are
not standardized and the result might depend on a wide range of factors. ITU-T
[2016b] extensively describes how to report MOS results and states that MOSs
collected in different experiments and contexts are not directly comparable.

In the experiments in Chapter 6, we use a subjective evaluation test to compare
multiple models with different architectures. The evaluation method follows this
metric and uses two finer five-point scales with the same labels as mentioned.

2Cloud Speech-to-Text, https://cloud.google.com/speech-to-text, accessed April 27, 2020

30

https://cloud.google.com/speech-to-text

3.4 MUSHRA

Latorre et al. [2019] and Lee and Kim [2019] use an alternative methodology
for subjective audio quality evaluation. It is called Multiple Stimuli with Hid-
den Reference and Anchor (MUSHRA) and it was defined by ITU-T [2015]. In
comparison with MOS, samples of all compared systems are presented to the par-
ticular subject at the same time (MOS presents a pair or a single recording). The
concurrent comparison aids more consistent ratings and enables usage of a paired
t-test for later statistical analysis.

MUSHRA uses a discrete scale from 0 to 100 without any labels. The calibration
of subject ratings is done via so-called reference and anchor recordings. The
reference is usually a ground-truth recording and the anchor is a degraded version
of the reference. These two recordings are rated together with the evaluated
systems’ outputs (it is not revealed to the evaluators which recordings are system
predictions and which are references or anchors). They also provide a sanity-
check for user ratings as we may expect ratings of the reference to be close to 100
and ratings of the anchor to be much lower.

Unfortunately, MUSHRA requires reference recordings which might not be avail-
able for some tasks. However, we adopted the idea of simultaneous rating of
multiple systems and we used it in our subjective evaluation test (see Chapter 6).

31

Chapter 4

Datasets

It is not surprising that data-driven models such as neural networks strongly
rely on training data. As described in Chapter 2, it is possible to automatically
synthesize a near-human-like speech. However, we cannot expect that the quality
or naturalness of generated speech will be better than the speech in the system’s
training data.

Making a high-quality text-to-speech dataset can be difficult and expensive. First,
studio-quality audio has to be recorded. Then it has to be segmented and aligned
with transcripts. Transcripts have to be cleaned and normalized. Thanks to the
abilities of end-to-end systems, we do not need to extract any further features
from transcripts and thus recent TTS datasets contain just audio-transcript pairs.
Each of the mentioned steps has some difficulties:

• Recording – Studio-quality recordings require a studio with equipment and
possibly a professional speaker. The speaker should read texts consistently
and in a way that corresponds with the eventual TTS system’s use – it can
be more or less expressive, it can vary in tempo, etc. The production of
recordings has also legal issues: in the end, a TTS system will allow us to
synthesize an arbitrary utterance in the natural voice of the original speaker
and it could be misused.

• Segmentation – The choice of suitable segmentation criteria is non-trivial.
Most likely, we would like to synthesize shorter utterances in the order of
sentences, so a sentence-based segmentation seems to be good. On the
other hand, a balanced distribution of segment durations (such as a normal
distribution) is desirable. However, splitting on the sentence level tends to
produce imbalanced duration distributions. Another segmentation strategy
splits recordings by silence. In contrast to automatic speech recognition,
the silence-based segmentation might not be desired for the text-to-speech
task (i.e., our training transcripts can start or end mid-sentence, which
may hurt prosody produced by a system trained on this data). There are
also other important segmentation criteria. For example, it is practical to
have phonetically balanced data, i.e., a roughly linear dependence between
segment durations and corresponding transcript lengths.

• Alignment – Another set of problems originates from aligning transcripts
with recordings. It is costly or impossible to do that manually, and usually
a forced aligner is used to do that (for example, Aeneas [Pettarin, 2017] or
Montreal Forced Aligner [McAuliffe et al., 2017]). Automatic aligners have

32

a limited precision, which can result in slightly shifted alignments. This is
a common problem of open-source datasets. In addition, there are often
missing or extra words at the beginning of transcripts (in comparison with
audio recordings), and models trained on these data tend to skip the first or
last words of the input. Trailing or leading silence can also cause problems
with stability.

• Cleaning – Finally, the cleaning of transcripts includes spelling out num-
bers, abbreviations, and other rare symbols. This brings about more prob-
lems, e.g., it can happen that the transcripts come from multiple different
sources (e.g., books of diverse writers, publishers, and editors or books writ-
ten in different languages) and then there are different writing styles with
slightly different usage of punctuation, lengths of sentences, etc., which
needs to be addressed.

Some of the problems mentioned above can be avoided by taking a different
approach to data collection. Here, data collection participants read out pre-
segmented and cleaned utterances (e.g., single sentences), which are recorded in
isolation. This kind of data acquisition is common for massively multi-speaker
datasets (such as VCTK described in Section 4.1). Even though it removes prob-
lems with segmentation, other problems may occur; for example, the readings
are often very poor in terms of prosody (i.e., all utterances are read in the same
monotonous way).

In comparison with ASR datasets (e.g., Ardila et al. [2019]), there are more
demands on the quality of TTS data. Even smaller, properly built datasets with
high-quality recordings can be more useful than huge and noisy datasets.

Unfortunately, a lot of recent TTS works mention proprietary datasets for training
and evaluation (e.g., Zhang et al. [2019]). Their authors probably cannot publish
the datasets because they are essential for successful commercial use.

We are now going to summarize the current publicly available TTS datasets with
short characteristics and descriptions of their pros and cons, focusing especially
on the datasets used in our experiments. First, we mention monolingual datasets
in Section 4.1 and than multilingual in Section 4.2. We will describe our own
data cleaning procedures in Chapter 6.

4.1 Monolingual Datasets

There are several high-quality and widely used English datasets (both single-
speaker and multi-speaker) because current research mainly focuses on English.
Beside these datasets, there is not much publicly available text-to-speech data.
ASR datasets, such as the Free ST Chinese Mandarin Corpus [Surfingtech, 2017],
are used instead.

Since we focus on multilingual text-to-speech, we mention them here only for
completeness. We used LJ Speech for preliminary experiments and sanity checks.

33

LJ Speech

One of the recently popular English text-to-speech datasets is the LJ Speech
dataset [Ito, 2017]. It is suitable for quick experimenting because it is relatively
small and high-quality. Therefore, many open-source implementations of neural
models described in Chapter 2 (e.g., [Park, 2018], [Ito, 2018], [Mama, 2018])
provide model weights trained on this dataset.

LJ Speech contains almost 24 hours of American English recordings read by Linda
Johnson. It was built from seven non-fiction books from the LibriVox project.1
LibriVox is maintained by volunteers and it contains a lot of audiobooks released
into the public domain. Transcripts were obtained from Project Gutenberg.2

LJ Speech audio data are sampled at 22,050 Hz and saved in the 16-bit PCM
format. The recordings contain subtle background noise and the speaker’s voice
has quite strong sibilants. The dataset includes 13,100 examples that consist of
transcripts, normalized transcripts and audio clips with the mean duration of
6.57 seconds and the standard deviation of around 2.18 seconds. The range of
durations spans an interval from 1.1 seconds to 10.1 seconds. Figure 4.1 shows
some properties of audio duration and utterance length distributions. We can
notice a nearly linear dependency between audio durations and utterance lengths.

Figure 4.1: Left: Dependency between lengths of transcripts and durations of
corresponding recordings. The solid blue line depicts the mean of durations cor-
responding to the particular lengths. The light blue area shows the standard devi-
ation of the durations. Right: Visualization of distributions of transcript lengths
and audio durations (vertical axis and horizontal axis, respectively) together with
their joint distribution. Darker color indicates higher relative frequencies.

The segmentation was done by splitting the original text by sentence or clause
boundaries. The alignment with audio recordings was created manually and thus
it has a very good quality. This is why the LJ Speech dataset does not suffer
from the segmentation and alignment problems described in the previous section.

1LibriVox, free public domain audiobooks, https://librivox.org, accessed February 29, 2020
2Project Gutenberg, https://www.gutenberg.org, accessed February 29, 2020

34

https://librivox.org
https://www.gutenberg.org

VCTK

LJ Speech contains recordings of a single speaker. On the other hand, the Centre
for Speech Technology Voice Cloning Toolkit Corpus [Veaux et al., 2017], abbre-
viated VCTK, contains data from many different speakers. As the name suggests,
it was built to study voice cloning abilities of TTS systems [Jia et al., 2018]. The
VCTK data contain text-audio pairs for 108 speakers with different English ac-
cents. For each speaker, it encompasses more than four hundred recordings. All
sentences used in this dataset were picked from newspapers by a greedy algorithm
which tried to maximize the phonetic and contextual coverage.

LibriTTS

LibriTTS is a large multi-speaker dataset [Zen et al., 2019]. It was derived from an
ASR dataset called LibriSpeech [Panayotov et al., 2015], and it contains around
585 hours of speech data from 2,456 speakers. Zen et al. [2019] took the orig-
inal audiobooks from LibriSpeech and applied the following processing pipeline
to them: they removed noisy audiobooks, resampled all recordings to 24 kHz,
created a sentence-level segmentation using a proprietary sentence splitter, nor-
malized all transcripts using the Kestrel system [Ebden and Sproat, 2015], and
used the engine for YouTube’s auto-sync feature to align recordings with texts.

4.2 Multilingual Datasets

Multilingual datasets are more important for this work. Some of them, namely
CSS10 [Park and Mulc, 2019], M-AILABS [2019], or TUNDRA [Stan et al., 2013],
consist partially or completely of LibriVox audiobooks (same as LJ Speech or
LibriTTS, see Section 4.1). One may easily conceive creating a large and very
diverse multilingual dataset using LibriVox because it contains audiobooks in
nearly one hundred languages. However, there are not many usable LibriVox
books for the vast majority of the languages. At the time of writing this work,
there is, for example, only one book entirely in Czech. Furthermore, the book is
read by a Slovak native speaker with a really strong accent. Most of the usable
languages of LibriVox audiobooks (besides English) are already included in CSS10
or TUNDRA datasets.

We chose CSS10 and a subset of Common Voice [Ardila et al., 2019] for our
experiments (see Chapter 6). In the following sections, we mention the aspects
we considered for each dataset.

M-AILABS

The M-AILABS Speech Dataset [M-AILABS, 2019] is a very large collection of
data from various sources. It is intended to be used for both ASR and text-to-
speech research. It focuses on European languages and contains data for nine
of them (German, English, Spanish, Italian, Ukrainian, Russian, French, and
Polish). A lot of recordings are in German (around 237 hours) and French (190

35

hours). The data were collected from very different sources. That is why they
have diverse sampling rates and quality. Some languages have just LibriVox
audiobooks; German data, for example, contain many hours of Angela Merkel’s
speeches, etc. Ukrainian data come from commercial companies which provided
them to M-AILABS for machine learning research purposes only. Spanish data
contain speakers from both Spain and Latin America. An advantage of this
dataset is that every language has several different speakers.

The enormous quantity of data implies that the costs of manually checking all the
data for correctness would be excessive. The segmentation and alignments were
created by an automatic tool. Missing or extra words at the beginning and end
of transcripts are extremely frequent. Even though the dataset provides raw and
normalized texts (except for French data), even the normalized variants require
further extensive cleaning to make the whole dataset usable.

We tried to use this dataset for training our models, but the results were very
poor due to noisy segmentation and alignments. It was also not very practical to
work and experiment with such a huge amount of recordings.

CSS10

The CSS10 dataset [Park and Mulc, 2019] offers a smaller, but cleaner alternative
to M-AILABS. It contains ten different languages including non-European lan-
guages (namely German, Greek, Spanish, Finnish, French, Hungarian, Japanese,
Dutch, Russian, and Chinese). It is based on LibriVox audiobooks. Every lan-
guage has up to 24 hours of single-speaker audio data (see Table 4.1), so it is not
nearly as large as M-AILABS. However, the size is sufficient for text-to-speech
experiments.

Table 4.1: Summary of CSS10 data properties grouped by language. The sec-
ond column provides information about the total length of all recordings. The
third column shows mean durations of individual examples, with the correspond-
ing standard deviations. The last column shows means and standard deviations
of transcript lengths (number of characters).

Language Recordings
Total Duration [h]

Recordings
Mean Duration [s]

Transcripts
Mean Length

German 16.13 7.82 ± 1.73 100.2 ± 25.9
Greek 4.14 8.08 ± 2.35 119.9 ± 40.9

Spanish 23.83 7.72 ± 2.10 112.6 ± 37.8
Finnish 10.53 7.83 ± 1.78 95.4 ± 26.8
French 19.15 7.97 ± 2.09 110.9 ± 36.5

Hungarian 10.01 7.98 ± 1.63 110.0 ± 28.6
Japanese 14.92 7.86 ± 1.45 118.8 ± 27.9

Dutch 14.11 7.82 ± 2.28 121.2 ± 41.2
Russian 21.37 8.01 ± 2.28 91.4 ± 34.9
Chinese 6.45 7.82 ± 2.05 118.3 ± 38.7

36

The segmentation was created automatically, and it follows silent pauses in origi-
nal audiobooks. However, very short segments obtained by splitting recordings on
silence were concatenated to reach a segment duration of approximately 10 sec-
onds. So the segmentation does not follow sentence or clause boundaries, i.e.,
examples usually start in pauses in the middle of sentences. Recordings are sam-
pled at 22,050 Hz. Figure 4.2 shows the distributions of text lengths and audio
durations of German and French CSS10 data; these are very similar for all CSS10
languages. The alignment and the normalization of texts were done manually by
experts. Chinese and Japanese were romanized and punctuation was preserved.

Figure 4.2: Graphs of transcript length and recording duration distributions for
German (top row) and French (bottom row) data in CSS10. The solid line in the
left graph depicts the mean of durations corresponding to the particular lengths.
The shaded area shows the standard deviation of the durations. The right graph
visualizes distributions of audio durations (vertical axis) and transcript lengths
(horizontal axis) together with their joint distribution. Darker color indicates
higher relative frequencies.

We chose CSS10 for our experiments because it represents a manageable size and
sufficient quality. However, in initial experiments, we found out that some align-
ments are not precise and the normalization is sometimes imperfect. That is why
we apply cleaning procedures to the dataset in our experiments (see Section 6.2).

37

TUNDRA

CSS10 provides more than ten hours of segmented and aligned audio data for eight
of its languages. The dataset called TUNDRA [Stan et al., 2013] is smaller than
that. It contains data in fourteen European languages; Table 4.2 summarizes the
amounts of data available for each of them (Stan et al. [2013] declare slightly more
aligned data than is, in fact, present on the download page of the dataset). Again,
the recordings come from LibriVox audiobooks and the transcripts come from
Project Gutenberg; there is one book for each language. The segmentation and
alignments were done by a semi-supervised algorithm and only data segmented
with high confidence (as predicted by the segmentation algorithm) were preserved.
Consecutive segments with duration shorter than 5 seconds were concatenated.

We do not use this dataset in our experiments in Chapter 6 because it provides
less data than is required by some TTS models.

Table 4.2: Properties of the TUNDRA dataset. “*” denotes languages that are
also included in the CSS10 dataset. The figures in parentheses are equal to dura-
tions declared by Stan et al. [2013], which slightly differ from the amounts avail-
able for downloading.

Language Recordings
Total duration [h]

Aligned recordings
Total duration [h]

Number of
Examples

Speaker
Gender

Bulgarian 6.1 4.1 (4.1) 3,139 Female
Danish 2.1 0.7 (1.1) 1,099 Male
*Dutch 6.5 4.5 (4.9) 3,844 Male
English 4.5 2.3 (2.4) 2,194 Female

*Finnish 3.1 2.5 (2.6) 1,357 Female
*French 4.0 2.1 (2.3) 1,890 Male

*German 9.5 7.9 (8.0) 4,865 Male
*Hungarian 8.5 5.0 (5.0) 4,510 Female

Italian 6.5 3.5 (5.0) 2,241 Male
Polish 3.1 2.6 (2.9) 2,078 Female

Portuguese 9.3 5.2 (5.2) 5,001 Female
Romanian 11.1 6.5 (7.0) 5,563 Female

*Russian 2.1 1.3 (1.6) 1,113 Male
*Spanish 12.1 8.0 (8.0) 7,902 Male

Common Voice

Multilingual datasets described so far were build on LibriVox audiobooks. Com-
mon Voice [Ardila et al., 2019], primarily aimed at ASR research, adopts another
approach to building speech datasets. Anybody can visit the official Common
Voice website3 and create recordings. Participants are given short texts and are
expected to read it aloud and record themselves. All recorded utterances are then

3Common Voice, https://voice.mozilla.org, accessed April 27, 2020

38

https://voice.mozilla.org

validated by other users. An advantage of this approach is that it enables creat-
ing a massively multi-speaker multilingual dataset. The Common Voice dataset
quickly grows and at the time of writing this text, it has 40 languages from all
around the world (e.g., Indonesian, Persian, Kinyarwanda, or Welsh) and, for ex-
ample, English has 1,118 validated hours of audio collected from 51,072 speakers
with various accents.

However, while this unmoderated way of collecting data is sufficient for ASR
data collection, it has many drawbacks for TTS research, as we found upon
manual inspection of selected examples. Some recordings are really noisy. The
noise is caused by bad microphones, but also by room conditions (ambient noise
such as traffic, playing children, animals, TV or radio, etc. in the background).
The vast majority of recordings have a period of silence at the beginning and
the end. Nevertheless, this is not a complete silence because speakers need to
press a button to start and stop recording and this click is often present in the
recordings. Another problem is that some users take an audible deep breath
before speaking. All these imperfections imply that recordings cannot be trimmed
easily. It is also not surprising that the recordings are rather short and their
reading style is often rather monotonous.4

We use a cleaned subset of this dataset corresponding to the CSS10 languages.
We will describe the subset we use for our experiments and the process of its
preparation in Section 6.2.

CMU Wilderness

Finally, we would like to mention the CMU Wilderness dataset [Black, 2019].
Unlike CSS10, TUNDRA, or M-AILABS, it is not built on top of LibriVox audio-
books. It is based on the Bible.is project5, which is, in our opinion, an excellent
source of TTS data. Bible.is contains audio versions of various editions of the
Bible in hundreds of languages. For example, the Czech audiobook is read by
Alfréd Strejček and its quality is very high. A potential problem is that some
recorded segments contain music and other sounds, as commercial audiobooks
usually do. Therefore, a speech separation algorithm would be required to use
these data. However, redistribution, modification, and adaptation of the content
provided by Bible.is is prohibited.

The CMU Wilderness dataset contains information for the recreation of segments
and alignments (which were created automatically) for 700 different languages.
Most of them are from equatorial Africa, South America, and Indonesia. Eu-
ropean and other more frequent languages are only included marginally. These
data were, for example, used by Boito et al. [2019] for creating a parallel speech-
to-speech corpus.

4On the other hand, we also found a participant who was singing all the interpreted texts.
5Bible.is | Read. Listen. See., http://www.bible.is, accessed February 29, 2020

39

http://www.bible.is

Chapter 5

Multilingual Speech Synthesis

We are now going to discuss related work that has already been done in the field
of multilingual end-to-end speech synthesis. First, we explain what the goals,
applications, and benefits of multilingual speech synthesis are:

• It is possible to make use of high-resource languages for training text-to-
speech systems for low-resource languages. This is usually done via transfer
learning approaches. At first, models are pre-trained on a large monolingual
dataset and then they are fine-tuned to a different language [Lee et al., 2018].

• One may think of using multilingual data for joint training of a single text-
to-speech model. Intuitively, this sharing of cross-lingual knowledge can
positively influence the performance and robustness of the resulting model.
To the best of our knowledge, this usage of multilingual data in speech
synthesis has not yet been explored. In a similar task, Latorre et al. [2019]
examined the effects of using multi-speaker data in a single language.

• It is sometimes needed to synthesize speech in multiple languages, but pre-
serve the same voice (e.g., in translational systems). This task is called
cross-lingual voice cloning. However, there is not a lot of training data
available where a single speaker speaks multiple languages. That is why
systems for cross-lingual voice cloning need to be trainable using mixtures
of monolingual data (with different speakers across languages).

• Closely related to cross-lingual voice cloning is the so-called code-switching.
In this task, we would like to alternate languages within a single utterance,
i.e., code-switching text-to-speech systems have to be able to read sentences
that consist of words from different languages. This ability is extremely
useful, e.g., for car navigational systems or station announcements, where
a large number of foreign names is to be expected.

In the following, we describe the latest research works on neural multilingual
TTS in detail. We focus on three areas sketched above in particular – low-
resource languages (Section 5.1), cross-lingual voice cloning (Section 5.2), and
code-switching (Section 5.3).

In our experiments in Chapter 6, we explore benefits of joint multilingual training
(even in low-resource settings) and we compare code-switching and voice cloning
abilities of models that closely follow the architectures by Zhang et al. [2019] and
Cao et al. [2019], which are also described in the following sections.

40

5.1 Low-resource Languages

Lee et al. [2018] investigated pre-training and fine-tuning with multilingual data.
For training, they used around 60 hours of phonemicized Korean audio-transcript
pairs. Subsequently, they separately fine-tuned the model to the languages from
the CSS10 dataset (see Section 4.2). During the fine-tuning steps, they used only
two hours of phonemicized data for each target language.

Chung et al. [2019] showed that it is possible to produce intelligible speech with
the Tacotron model (see Section 2.2.3) trained on only 24 minutes of English
audio-transcript pairs. They first pre-trained the decoder with large-scale un-
paired or unlabeled English speech data and initialized the encoder with previ-
ously pre-trained word embeddings. Then, they fine-tuned the model with the
small amount of audio-transcript pairs. This smart initialization can be used in
the case of languages with lack of transcribed or aligned audio data.

A recent work by Chen et al. [2019] aimed at adaptation of pre-trained Tacotron
to low-resource languages with even less data. They used English data for pre-
training, and they applied Tacotron that expects phonemicized texts on the input.
They evaluated their technique on German, French, and Chinese and showed that
they are able to produce a relatively good TTS system with as little as 15 minutes
of paired low-resource training data.

Chen et al. [2019]’s training method has three stages. First, they jointly train
an ASR model and Tacotron on high-resource data. The ASR module predicts
phonemes that are passed into Tacotron. Subsequently, they make use of the low-
resource data. They fix the ASR module and train another neural network called
the phonetic transformation network (PTN) which learns a mapping between
outputs of the ASR module and characters of the low-resource language. The
target mapping required for synthesis in the other language is then the inverse of
the mapping learned by PTN. This means that zero or more characters from the
high-resource language can be mapped to a single characters of the low-resource
language. If source characters are ambiguous, authors simply take the one with
the highest probability, and characters that are not mapped by any source char-
acter are trained from scratch. So the model is able to obtain a mapping from
characters of the low-resource language to characters of the language originally
used for the pre-training. Finally, they fine-tune the pre-trained Tacotron model
with the low-resource data with transcripts modified using the mapping.

Prakash et al. [2019] tried to overcome scalability issues of multilingual text-
to-speech for Indian languages which are caused by the usage of many differ-
ent scripts (they considered 13 languages with 8 different scripts). They pro-
pose a unified character representation called the multi-language character map
(MLCM) and a unified phone representation called the common label set (CLS).
The unified representation makes it possible to handle all the languages together
by a single model.

41

5.2 Voice Cloning

Strong results in multilingual multi-speaker voice cloning were presented by Zhang
et al. [2019]. The work builds on domain-adversarial training techniques proposed
by Ganin et al. [2016] and it closely follows Hsu et al. [2019]. The proposed model
is based on Tacotron 2 (see Section 2.2.4) conditioned on phonemes.1 The model
was trained on English, Spanish, and Chinese data. The authors used a pro-
prietary dataset that comprises 385 hours of English from 84 professionals with
various accents, 97 hours of Spanish from 3 speakers, and 68 hours of Chinese
from 5 speakers. This huge amount of professional high-quality data, unfortu-
nately, makes it very difficult to reproduce the results. Nonetheless, they describe
conditions critical to achieving good performance:

• Using a phonemic input representation to encourage sharing of model ca-
pacity across languages. – This reduces demands on the complexity of the
encoder, because it does not have to learn pronunciation anymore. How-
ever, such an approach requires an algorithm for converting graphemes to
phonemes. Zhang et al. [2019] concatenated stress embeddings for Spanish
and English and tone embeddings for Chinese to the input phoneme em-
beddings. This further reduces the information to be learned from raw text
data by the encoder, but it also requires preprocessing and external tools.

• Incorporating an adversarial loss term to encourage the model to disentangle
its representation of speaker identity from the speech content. – During train-
ing, Zhang et al. [2019] apply an adversarial speaker classifier to encoder
outputs and revert gradients2 flowing from this classifier. They are clipping
the reverted gradients as some encoder outputs can be highly language-
dependent and this could cause unstable training.3 In this way, they try
to obtain a language- and speaker-independent encoder and to move any
language-dependent processing to the decoder.

• Scaling up the model by training on data from multiple speakers of each
language, and incorporating an autoencoding input to help stabilize attention
during training. – The decoder is conditioned on a language embedding
and a speaker embedding. It means that multi-speaker multilingual data
are needed for training. The conditioning is done by concatenating the
embeddings to encoder outputs. Besides these embeddings, the decoder
is conditioned also on an autoencoding input. This input is obtained by
a separate variational autoencoder4 with an architecture proposed by Hsu
et al. [2019]. The autoencoder is conditioned on ground-truth spectrograms
and outputs low-dimensional vectors in a latent space which should reflect
prosodic variation in training examples. During inference, an all-zero vector
is used instead of the autoencoding input. While the autoencoder improves
performance, a very large batch size is required to stabilize its training.

1Zhang et al. [2019] also experimented with byte and character inputs, but they evaluated
voice-cloning performance only on phoneme inputs; according to them, it guarantees correct
pronunciation and more fluent speech.

2See “Gradient” in the Glossary.
3See “Gradient clipping” in the Glossary.
4See “Variational autoencoder” in the Glossary.

42

Figure 5.1 shows the architecture of the modified Tacotron 2 with speaker and
language embeddings, together with the newly proposed modules which are used
only during training, i.e., the adversarial classifier and the residual autoencoder.

Figure 5.1: Visualization of Zhang et al. [2019]’s modified Tacotron 2 that sup-
ports cross-lingual multi-speaker voice cloning. In comparison with the original
Tacotron 2 model (see Section 2.2.4), the modified model contains an adversar-
ial speaker classifier with a gradient reversal layer (orange), a residual encoder
that encodes target spectrograms into a low-dimensional latent space (green), and
language or speaker embeddings (pink) which are concatenated to outputs of the
encoder. The adversarial classifier includes two fully connected layers with an
output softmax layer. The autoencoder (green) consists of two one-dimensional
convolutional layers that are followed by a single LSTM layer. Its final hidden
state is passed into separate fully connected layers that predict vectors of means
and variances of the residual autoencoding input.

Nachmani and Wolf [2019] extended the Voice Loop architecture (mentioned in
Section 2.2.7) to enable cross-lingual voice cloning. The authors showed con-
version abilities in three languages – English, Spanish, and German. The model
uses multiple text encoders, one per language, and a shared network that outputs
a speaker embedding. To preserve speakers’ identities during language conver-
sions, a special loss term is applied to the space of speaker embeddings. For
training, they used the English VCTK dataset (see Section 4.1) together with
Spanish DIMEx100 [Pineda et al., 2009] and German PhonDat.5

5.3 Code-switching

Zhang et al. [2019]’s voice-cloning technique described in the previous section can
also be used for reading texts that consist of words from multiple languages. It
is enough to change character-level language embeddings which are concatenated
to encoder outputs so that they correspond to the true language of the particular
words. However, the primary subject of the work was to enable cross-lingual
multi-speaker voice cloning.

On the other hand, Cao et al. [2019] focused directly on code-switching and for
this purpose, they proposed some modifications of Tacotron 1 (see Section 2.2.3).

5Phonetik BAS, https://www.bas.uni-muenchen.de/forschung/Bas/BasKorporaeng.html,
accessed April 28, 2020

43

https://www.bas.uni-muenchen.de/forschung/Bas/BasKorporaeng.html

They used a relatively small amount of data – 8 hours of Chinese and 7 hours of
English single-speaker data. Both the English speaker and the Chinese speaker
are females with very similar voices, so the requirements on voice cloning abili-
ties to make the model sound convincing are not high. Unlike other mentioned
multilingual approaches, this model expects grapheme inputs without any tone
or stress labels. Note that the model uses romanized forms of Chinese texts.

Cao et al. [2019] suggest two simple, alternative modifications of Tacotron:

(a) Adding a separate language-specific encoder for each language. The code-
switching itself is then done by masking and combining outputs of the
particular encoders, i.e., input texts are passed through all encoders and
the encoded sequences are mixed before decoding.

(b) Having a language embedding that is incorporated into a single shared en-
coder in various places. Code-switching can then be performed by changing
character-level language embeddings.

The authors state that the approach with separate encoders outperformed the
other approach on all evaluation settings.

44

Chapter 6

Experiments

We are now going to present our original experiments. We would like to answer
a few questions that have not been investigated yet by current multilingual text-
to-speech research.

There are multiple limitations to today’s multilingual TTS models. First, a lot
of multilingual models use phoneme inputs. This poses a problem because it can
be very hard to obtain accurate phonemicized variants of texts for less frequent
languages, even though there are tools like Epitran [Mortensen et al., 2018]. This
motivates us to perform all our experiments directly on grapheme inputs. Second,
the current multilingual works are multilingual in a limited way – they usually
pay attention to two or three languages and do not discuss the scalability of their
approaches. Third and finally, some works use proprietary or other not properly
specified data, so reproducibility is complicated.

These limitations motivate us to search for an answer to the following main
questions in this chapter:

1. Could it be beneficial to use multilingual instead of monolingual data?
2. Are currently proposed multilingual models scalable to more languages?
3. Are they also able to perform code-switching with grapheme inputs?

The first question touches the principle of multilingual training in the context
of speech synthesis. Intuitively, cross-lingual parameter and knowledge sharing
should be advantageous while training models for low-resource languages. This
can make training on openly available data viable. The second question tries
to reveal the performance of multilingual models that concern more than three
languages. Finally, the third question aims at code-switching or voice cloning
without expensive input preprocessing.

In Section 6.1, we describe our implementation of three text-to-speech systems.
The first is a partial reimplementation of the model proposed by Hsu et al. [2019,
see Section 5.2], the second is a modification of the model by Cao et al. [2019,
see Section 5.3], and the third is our own new model that tries to combine ad-
vantages of the two previous models. We call these models Shared, Separate,
and Generated, respectively. In Section 6.2 we discuss the preparation of our
cleaned versions of CSS10 and Common Voice datasets. Finally, in Sections 6.3
and 6.4, we present the evaluation of our models and provide an answer the above
questions, at least in the context of our three models.

45

6.1 Implementation

We decided to base our multilingual experiments on the Tacotron 2 architecture
with the WaveRNN vocoder (described in Sections 2.2.3 and 2.2.5, respectively).
There were multiple reasons for this choice: Tacotron 2 provides state-of-the-art
results for end-to-end spectrogram generation. It is easily extensible and it is
used by numerous recent works (see Section 5).

There are many open-source implementations of Tacotron available [Mama, 2018,
Valle, 2020], but we decided to build our own implementation from scratch. The
main reason for this was that we experimented with various architectures and
the reimplementation was easier to work with for us than using and modifying
existing code. Moreover, we gained awareness about all essential things that make
the training of Tacotron 2 possible. The source code is available online at the
GitHub repository of this work.1

In our initial experiments, we used Tacotron for generating linear spectrograms
and we used the Griffin-Lim algorithm (cf. Section 2.2.3) for vocoding. That is
why our implementation has an option for generation of linear spectrograms. To
produce more natural-sounding speech, we later employed a public implementa-
tion of WaveRNN which is released under the MIT license [Fatchord, 2019]. It
does not include all the features described by Kalchbrenner et al. [2018], but it
can generate audio in real time on a regular hardware. Training of WaveGlow
[Prenger et al., 2019] was not possible in our conditions because of hardware
limitations. We would like to note that we have not experimented with other
approaches to spectrogram inversion such as MelGAN [Kumar et al., 2019].

In the following, we describe the implemented models one-by-one and explain our
design choices made based on preliminary experiments on the development data.

6.1.1 Tacotron 2

Shen et al. [2018] clearly describe the architectures of their Tacotron 2 encoder,
prediction layers, the pre-net, and the post-net (see Section 2.2.4), but they do
not mention some implementation details. It is not clear how exactly the decoder
and the attention mechanism should look like. They do not tell us anything
about the weighting of loss functions, nor do they tell us how to compute the
loss function of stop tokens. The authors also does not mention whether or how
to normalize input spectrograms. We are now going to describe the architecture
details we decided to use in our own implementation.

Encoder: According to Shen et al. [2018], the vanilla encoder of Tacotron 2
starts with 512-dimensional character embeddings which are passed into three
one-dimensional convolutional layers with kernel size 5 and with 512 filters. All
the convolutional layers are followed by batch normalization layers, ReLU ac-
tivations, and a dropout layers with rate 0.5. Finally, the output of the last

1https://github.com/Tomiinek/Multilingual_Text_to_Speech

46

https://github.com/Tomiinek/Multilingual_Text_to_Speech

convolutional layer is passed into a bidirectional LSTM layer with 256 units in
each direction.

Pre-net, post-net: The pre-net includes two fully connected layers of size 256,
each of these layers is followed by a ReLU activation and a dropout layer with
rate 0.5 that is enabled also during inference. The post-net consists of five con-
volutional layers with 512 filters and with a kernel of size 5 followed by batch
normalization layers and tanh activations (except for the last layer).

Decoder: Since Shen et al. [2018] do not give any details on the decoder, open-
source implementations vary at this point. Multiple options are plausible, for
example, using an extra RNN layer that produces attention queries or using the
predicted frame as the attention query. We considered two possibilities. The first
one is probably closer to the description mentioned by Shen et al. [2018] (see
Figure 6.1 left). It uses two stacked LSTMs and the output of the second one is
used for the stop token prediction, the frame prediction, and also as the attention
query in the next decoder step. The second one (Figure 6.1 right) follows the
architecture of the first version of Tacotron (cf. Section 2.2.3), i.e., the output of
the first RNN layer is used as the attention query and the second RNN layer is
used as a generator of frames and stop tokens. We decided to take the second
option as it seems, in our opinion, to be more justifiable. In the first architecture,
the final output of the LSTMs is overloaded and used for three different things. In
contrast, the second option leaves the second, “generator” LSTM more freedom.

Figure 6.1: Diagram showing two different architectures of Tacotron’s decoder.
Arrows depict information flow. Dashed lines represent dependency between two
consecutive decoder steps. Left: An architecture that uses the final output of the
second LSTM as the attention query. Right: Another Tacotron-1-style construc-
tion that uses the final output of the first LSTM as the attention query.

Unlike Shen et al. [2018], we use a simple dropout on the decoder’s LSTM outputs
instead of the zoneout regularization. We experimented with both approaches and
did not find any differences in the quality of resulting spectrograms. The dropout
version is easier to implement and probably slightly faster.

We use full teacher forcing during training, i.e., at each decoder step, we feed the
ground-truth frame from the previous step (passed through the pre-net) into the
decoder. Any attempts to gradually use more predicted frames instead of ground-

47

truth ones were not successful. We experimented, for example, with linear and
exponential decay of the teacher forcing ratio, but both cases lead to unstable
training and problems with gradients.

Attention: Our implementation of the location-aware attention mechanism is
straightforward and follows exactly the equations introduced in Section 2.2.4.
While some public implementations of Tacotron (such as Valle [2020]) use atten-
tion weights computed in the previous decoder step as an additional feature, we
do not use this extension. We did not implement any additional features such as
sharpening and smoothing [Chorowski et al., 2015].2

As an alternative which could replace the location-sensitive attention, we addi-
tionally implemented the forward attention [Zhang et al., 2018]. This type of
attention promotes monotonous alignments, i.e., once the attention mechanism
focuses on a part of the input sequence, it most likely no longer allows to focus
on any preceding part. It calculates the weight of the n-th sequence element at
time t using a recursive formula: αt(n) = (αt−1

n + αt−1
n−1) · et

n where α and e follow
the notation from the Glossary3, i.e., α denotes attention weights and e denotes
unnormalized energies returned by the attention layer. Based on preliminary
experiments, we decided not to use the forward attention in our models. The
forward attention provides faster convergence, but it may be too restrictive. We
found out when using the original attention mechanism that some models attend
to certain input tokens repeatedly once they reach punctuation marks, but this
does not lead to word repetition on the output. With the guided attention loss
(see Section 2.2.6), the location-sensitive attention can converge rapidly.

Loss functions and optimization: The authors of Tacotron 2 suggest opti-
mizing the summed mean squared error4 (MSE) from before and after the post-net
to aid convergence. We experimented with optimization of the L1 loss function
instead5 (it was used in the first version of Tacotron), but we did not notice
any substantial differences. During training, we mask predicted spectrograms to
match the lengths of their targets.

We do the same with predictions of the stop token and we train the model to
predict high stop probabilities for a few last frames. To be more specific, we
use the cross-entropy loss function.6 The target stop token class is negative for
all frames except for f = 5 last, where it is positive. The loss function weights
the positive class as 100× more important to compensate for class imbalance.
Because we use f last frames to decide on the end of synthesis, we stop the
generation of new frames f frames after we encounter a positively classified stop
token during inference.

We also incorporated the guided attention loss [Tachibana et al., 2017, see Sec-
2Sharpening uses a windowing mechanism so that the attention considers only a subsequence

of the input sequence. Smoothing uses a different normalization of predicted attention weights.
3See “Attention mechanism” in the Glossary.
4See “MSE loss” in the Glossary.
5See “L1 loss” in the Glossary.
6See “Cross entropy loss” in the Glossary.

48

tion 2.2.6] into our implementation. We start with the g parameter (that controls
the strictness of the diagonal) equal to 0.25. During training, we gradually in-
crease the tolerance of the guided attention loss by increasing the g, so this loss
term is only important at the beginning of training. We use an exponential sched-
ule (we multiply g by a factor γ = 1.00025 every training step). This approach
helps to establish the attention very well and we usually obtain a fully converged
model after less than 50k training steps (which is the point where Shen et al.
[2018] start with the exponential learning rate decay).

We found out that a proper weighting of loss terms is crucial for good performance
and fast convergence. We divide the stop token loss and the guided attention loss
by the number of mel bands of predicted spectrograms. Without this weighting,
the stop token prediction was not very reliable and the model was too limited by
the attention loss. We also weight the MSE before the post-net 2× more than
the MSE after the post-net.

For optimization of the loss function, we use the Adam optimizer with common
settings (β1 = 0.9, β2 = 0.999, ϵ = 10−6, and weight decay of 10−6) and with the
initial learning rate 0.001.7 A simple stepped learning rate decay worked better
for us than the exponential schedule8 that was suggested by Shen et al. [2018].
We thus halve the learning rate every few thousand steps (the exact number of
steps varies for different models).

Proof-of-concept single-speaker model: As a proof of concept, we trained
our Tacotron 2 implementation on the LJ Speech dataset [Ito, 2017, see Sec-
tion 4.1]. See the GitHub repository of this work.9 It contains a link to a few
samples synthesized using the trained monolingual model. Note that the samples
were vocoded by the Griffin-Lim algorithm, so the naturalness is not human-like.

Multi-speaker extensions: In order to use the architecture on our data, we
finally needed to extend the Tacotron model to support multi-speaker or multi-
lingual synthesis. A multi-speaker modification of the first version of Tacotron
[Wang et al., 2017, see Section 2.2.3] was proposed by Gibiansky et al. [2017].
It transforms one-hot vectors corresponding to speaker identities using multiple
site-specific embedding layers followed by soft-sign activations. The resulting
speaker representations are then used for initialization of the initial hidden state
of GRU layers (both, in the encoder and decoder).

In case of Tacotron 2 [Shen et al., 2018], the multi-speaker support is usually
added by concatenating the same single speaker embedding with all encoder out-
puts (e.g., Jia et al. [2018]). We did not find any noticeable advantage in the
speaker-dependent initialization of decoder’s recurrent layers, so in order to make
the model multi-speaker or multilingual, we simply use the concatenation. In our
experiments, we choose speaker or language embedding size with respect to the
number of voices or languages in the training data (i.e., the nearest power of two).

7See “Optimizer”, “Weight decay”, and “Learning rate” in the Glossary.
8See “Learning rate schedule” in the Glossary.
9https://github.com/Tomiinek/Multilingual_Text_to_Speech

49

https://github.com/Tomiinek/Multilingual_Text_to_Speech

6.1.2 Shared Encoder

We are now going to provide details about the Shared model. It follows the work
by Zhang et al. [2019] and consists of Tacotron 2 (as described in Sections 6.1.1),
an adversarial speaker classifier, and speaker or language embeddings. The origi-
nal overall architecture of Zhang et al. [2019] was already described in Section 5.2.

A difference from Zhang et al. [2019] is that we do not include their residual
autoencoder, which was originally used for stabilization of prosody. We imple-
mented it but did not observe any performance improvements. Even without
the residual autoencoder, we did not encounter any problems with very unnat-
ural pauses as reported by the authors, and thus we conclude that the residual
encoder is only needed when training on datasets with a high prosodic variation.

We implemented the adversarial speaker classifier as a neural network with a hid-
den fully connected layer of size 256 followed by another fully connected layer
that predicts speaker identities. As described in Section 5.2, gradients from the
classifier are reversed to enable voice cloning. We clip the reverted gradients
to 0.25. Same as with the stop token (see Section 6.1.1), it was extremely im-
portant to properly weight the adversarial loss function (i.e., cross-entropy). We
divide it by the number of predicted mel bands as in the case of the stop token
loss. On top of that, we use an additional weighting parameter w. Zhang et al.
[2019] use weights from 0.02 to 0.1 and state that it can be used to control ac-
cent level (lower values cause stronger accent and higher values correspond to
lighter foreign accent). However, they used phoneme inputs and our approach
– using the adversarial classifier together with grapheme inputs – seems to be
more complicated. Higher values prevent the model from convergence and lower
values result in poor voice-cloning abilities. We empirically found out that w in
the range from 0.1 to 2.0 works well on our data.

We also experimented with an alternative approach to eliminating unwanted in-
formation via domain-adversarial training. The gradient reversal may lead to
a perfect fooling of the speaker classifier, resulting in a case where the classi-
fier has 0% accuracy (so the information is actually not removed). Heo et al.
[2018] use the cosine similarity loss10 over classifier weights and encoder outputs
to make these two vector spaces orthogonal. They show that this kind of domain-
adversarial process can reduce channel information on the speaker identification
task and that it should not lead to 0% classifier accuracy. We implemented this
method, but unfortunately the models did not converge on our data.

6.1.3 Separate Encoders

The second model that we would like to examine is called Separate, and follows
Cao et al. [2019, see Section 5.3]. It builds on Tacotron 2 (Section 6.1.1), but
it uses multiple distinct language-specific encoders. The decoder is conditioned
on concatenations of encoder outputs and speaker embeddings. It enables code-
switching by combining outputs of different encoders. The architecture was orig-
inally used just for two languages, but we would like to make it usable for more

10See “Cosine similarity loss” in the Glossary.

50

of them. Therefore, we adapted Cao et al. [2019]’s model by using convolutional
encoders instead of recurrent.

Having a separate encoder for each language that is in our training data could be
intractable. For example, the CSS10 dataset has 10 languages, so we would need
10 encoders. Since language-balanced batches are desired to promote learning all
languages at an equal pace (see below), during training, we would have to pass the
same input batch through all the encoders, which can be very slow. This problem
can be overcome by parallelization of the encoders. Thus we replace original
encoders that contain recurrent layers by fully convolutional encoders used in the
DCTTS model [Tachibana et al., 2017, see Section 2.2.6]. This change allows us
to implement all the encoders using grouped layers, and thus all encoder-related
computations can be done effectively in a single pass.

We now provide a detailed description of the architecture and parameters of the
encoders. They consist of two types of building blocks.

Ck,d
i,o – This module consists of a one-dimensional convolutional layer, a batch

normalization layer, and a dropout layer. The batch normalization can be
followed by an activation function. For convenience, we will denote this
block as Ck,d

i,o where k is the size of the kernel of the convolutional layer,
d stands for its dilation11 and i or o denote input and output dimensions,
respectively. We will omit o in the notation if o = i.

Hk,d
i,o – The second module is very similar to the first one, but it has got a one-

dimensional highway convolutional layer instead of a simple convolutional
one.12 The input to this layer is passed through two equal-sized convolu-
tional layers. The output of the first one is followed by a sigmoid function
that produces an output g which is used in a gating mechanism. The gat-
ing mechanism combines the input i of the module and the output o of
the second convolutional layer as follows: x = g · i + (1 − g) · o, where x
denotes the output of the convolutional highway layer. Same as for Ck,d

i,o ,
batch normalization and dropout follow. We will denote this module Hk,d

i,o

where all indices have the same meaning as for Ck,d
i,o .

We can now easily describe the architecture of the our convolutional encoder
using the above notation: C1,1

512,256 with ReLU C1,1
256 H3,1

256 H3,3
256 H3,9

256
H3,27

256 H3,1
256 H3,3

256 H3,9
256 H3,27

256 H3,1
256 H3,1

256 H1,1
256 H1,1

256.

In comparison with Tachibana et al. [2017]’s DCTTS encoder, we enhanced all the
modules with batch normalization layers and with dropout layers with a dropout
rate of 0.05. However, this regularization implies a slightly slower convergence.
We also experimented with group normalization, but it did not work well.13

We implement all the convolutional layers and batch normalization layers us-
ing their grouped variants (they are directly supported by modern deep learning

11See “Convolutional network” in the Glossary
12Cf. “Highway network” in the Glossary.
13See “Group normalization” in the Glossary

51

frameworks such as Pytorch [Paszke et al., 2019]). However, to utilize the po-
tential of this architecture during training, we need to construct training batches
extraordinarily. We would like to have a batch of B examples that can be re-
shaped into a batch of size B/L where L is the number of encoder groups or
languages. This new batch should have a new dimension that groups all ex-
amples with the same language, because then, we can process them in a single
encoder pass. That is why we use a batch sampler that creates batches where for
each l < L and i < B/L, all (l + iL)-th examples in the batch (indexed from 0)
are of the same language.

This per-language batch splitting results in a problem with an imbalanced batch
size of the decoder and encoders. Encoders are trained with reshaped batches
of size B/L, but the decoder uses the original batch of size B. So the effective
size of the encoder’s batches can be small and that is why they may require low
learning rate values for stable training. However, the decoder with larger batch
sizes requires a higher learning rate to properly converge. In our experiments,
we attempted to solve this discrepancy by using two optimizers with different
learning rates, but the model did not converge very well. We had problems
with overfitting of the decoder, which resulted in a poor attention. In the end,
a lower learning rate used for all parameters in the network works best. In our
experiments, we use a lower initial learning rate values such as 10−4.

6.1.4 Generated Encoder

At the first sight, the main advantage of the Shared model (Section 6.1.2) is
that it shares encoder parameters between all languages. The sharing implicitly
leads to a language-independent encoder and this effect is even more empha-
sized by the adversarial speaker classifier. All language-dependent processing
happens in the decoder, and that is why the decoder needs the discriminative
embedding explicitly factorized into language and speaker parts. However, the
parameter sharing might be also a disadvantage because there are languages with
very diverse pronunciation rules. For example, German has a nearly one-to-one
correspondence between graphemes and phonemes, i.e., a sequence of graphemes
corresponds to a sequence of phonemes with a similar length (e.g., fabelhaft re-
sults in [fa:b@lhaft]), but French usually pronounces multiple graphemes as a sin-
gle phoneme (e.g., merveilleux results in [mEövEjø]). These huge differences in
pronunciation might cause problems, for example, with stability of the attention
mechanism.

On the other hand, the Separate model (Section 6.1.3) is more flexible, and it
can learn distinct pronunciation rules for each language. But having a separate
encoder for each language may lead to worse voice cloning abilities as speaker-
specific information (which correlates with language) can leak into language-
specific encoders more easily. Obvious disadvantages of this approach are limited
scalability and missing cross-lingual knowledge sharing.

These thoughts brought us to the Generated model. It combines parameter shar-
ing and language-specific convolutional encoders. It is based on the idea of con-
textual parameter generation that was proposed by Platanios et al. [2018] for

52

neural machine translation and that was also successfully applied, for example,
to the music separation task [Samuel et al., 2020]. This method makes use of
multiple site-specific generator networks that produce parameters for layers of
the backbone model (the convolutional encoder in our case) from an input lan-
guage embedding. All the generator networks are implemented as fully connected
layers. They can be viewed as bottlenecks that select features of the input lan-
guage embedding that are relevant for the particular generated layer. That is
why they should be smaller than the input language embedding.

This approach allows controllable parameter sharing (by changing the dimension-
ality of generator networks). However, the model can still decide about language
similarities by itself. The model also does not suffer from the problem with im-
balanced training like the Separate model and as we found out in preliminary
experiments, it can be combined with the adversarial speaker classifier to further
support voice-cloning abilities. Moreover, this model can control accent by a sim-
ple mixing of outputs of different encoders. To sum it up, the Generated model
is the Tacotron 2 model (Section 6.1.1) with an adversarial classifier from the
Shared model (Section 6.1.2) and with a convolutional encoder with generated
parameters (see Figure 6.2). The decoder is conditioned on concatenations of
encoder outputs and speaker embeddings.

Figure 6.2: Illustration of the Generated model. It includes a parameter generator
network (green), a grouped convolutional encoder (red, each group has language-
dependent parameters generated by the green module), the adversarial speaker
classifier (orange), and finally the decoder (blue) that accepts a concatenation of
encoder outputs and speaker embeddings (pink). The adversarial classifier is only
used during training.

During training, we use the same batch sampling method as in the case of the
Separate model (Section 6.1.3). For each training batch, we generate parameters
for all language-specific convolutional encoders. In our experiments, we usually
set the size of the language embedding to double the number of languages. We
choose the size of bottlenecks to be lower than the number of languages. While
setting this number, we have to keep in mind our hardware capabilities because
there is a linear dependence between this number and the number of encoder
parameters. Note that a monolingual convolutional encoder has roughly 5× less
parameters than the Tacotron 2 decoder.

53

6.1.5 WaveRNN Vocoder

As we said at the beginning of this section, we trained the WaveRNN model
[Kalchbrenner et al., 2018, see Section 2.2.5] for the purpose of vocoding. We
used an open-source implementation (the source code used for training is avail-
able online at GitHub).14 The model consists of three modules. The first includes
a stack of convolutional blocks with residual connections, the second is an upsam-
ple network that consists of two-dimensional convolutional layers (with just one
filter). Finally, the third module modifies the output of the upsample network
and produces the output waveform. It contains two GRU layers that are preceded
and followed by a few fully connected layers. The output of the first module is
split along the last dimension and parts of this split are fed into multiple different
layers of the third module. See Figure 6.3 for a detailed description of the overall
architecture. The last fully connected layer is followed by a softmax layer that
produces a probability distribution over the current position of the audio wave.
The distribution is sampled during inference to obtain the next audio sample.

We set the size of the two GRU layers and all fully connected layers to 512 (except
for the last one that predicts outputs), we use ten convolutional blocks with 128
filters. The network generates µ-law quantized 10-bit audio sampled at 22,050 Hz.
During training, we use mini-batches of size 64 balanced with respect to speaker
identities. The network is optimized by the Adam optimizer [Kingma and Ba,
2015] with weight decay. The learning rate is initially set to 10−3 and is halved
every 100k training steps.

Figure 6.3: Illustration of Fatchord [2019]’s implementation of the WaveRNN
model. Red color groups a network made of stacked convolutional residual blocks.
BN stands for batch normalization. Its output is at the end stretched to match
the sampling rate of the target and split into four branches. Blue color groups an
upsample network that gradually stretches the input spectrogram. The key part of
the network is in green color. It consists of a few GRUs and fully connected layers
(FC) with ReLU activations. Layers are interconnected with residual connections.
In the end, an output distribution over audio bits is predicted.

In our experiments, we trained the network for 725k training steps on ground-
truth-aligned spectrograms (GTA). To obtain the GTA spectrograms, we trained
a monolingual Tacotron 2 model (Section 6.1.1) for each language in our training

14https://github.com/Tomiinek/WaveRNN, which is based on Fatchord [2019].

54

https://github.com/Tomiinek/WaveRNN

data, and we synthesized new spectrograms in a supervised mode with enabled
teacher forcing. The Tacotrons used for this purpose do not have to be even able
to produce speech from text because we are only interested in their decoders.

Fatchord [2019]’s implementation can optionally do a batched inference that is
quite fast on a GPU. However, CPU inference takes a lot of time. To enable
real-time CPU inference, we experimented with weight pruning as described by
Kalchbrenner et al. [2018], but the quality of outputs degraded, so we do not use
it in the experiments described later in this chapter.

6.2 Data Preparation

This section is devoted to the description of data that we used for the training of
our models. We base our dataset on CSS10 and Common Voice (see Chapter 4).

6.2.1 CSS10

We already discussed some imperfections of CSS10 in Section 4.2. We showed
distributions of duration and length of CSS10 examples, and we compared the
distributions to the statistics of the LJ Speech dataset (compare Figure 4.1 with
Figure 4.2). Note that LJ Speech is a very popular dataset, partly because it is
clean and suitable for TTS training. That is why we would like to accommodate
CSS10 and make it more similar to LJ Speech.

Textual normalization: First, we decided to normalize all textual utterances
across all languages. We computed frequencies of symbols in the dataset and
we replaced some less frequent characters by their more frequent alternatives.
For example, we replaced French œ with o and e, question marks of Eastern
languages “？” with European question marks “?”, we unified quotation marks
by replacement of Chinese 「」 , French «» or Hungarian „” by English "", etc.
We also removed any examples with non-standard characters and numbers, and
we obtained the following reduced character set in the end (for brevity, we do not
show capital letters):15

abcdefghijklmnopqrstuvwxyzçèéßäöōǎ̌ıíǒàáǔüèéìūòóùúāēě̄ıâêôûñőű
абвгдежзийклмнопрстуфхцчшщъыьэюяё
άέήίαβγδεζηθικλµνξοπρςı́στυφχψωόύώ
()¿?¡!、。，,.:;-’"

CSS10 was created from different audiobooks and contains various punctuation
styles. To tackle this issue, we removed punctuation from the beginning of tran-
scripts, we removed spaces before full stops, exclamation marks, etc. We also
merged multiple sentence endings, e.g., “?!?” was replaced by “?”.

Very common inconsistency is caused by different usage of dashes. Some tran-
scripts contain double hyphens to denote en dashes or em dashes, some do not

15Note that Chinese and Japanese were romanized (see below).

55

contain space before or after them, etc. At first, we replaced en dashes and em
dashes (and Chinese dashes, horizontal bars, etc.) with double hyphens, then
we replaced pairs of hyphens together with surrounding whitespaces by a sin-
gle hyphen with a space before and after it. Secondly, we made sure that these
characters are not preceded or succeeded by other punctuation marks (so, for
example, we normalized “Yes! - Said Bob.” into “Yes! Said Bob.”). The cleaning
was done using regular expressions. However, even the cleaned text might contain
a small amount of odd punctuation combinations.

Figure 6.4: Graphs describing dependencies between text lengths and audio dura-
tions of cleaned German (blue) and French (orange) data in the cleaned CSS10
dataset. Compare this figure with Figure 4.1 and Figure 4.2. Left: Dependency be-
tween lengths of transcripts and durations of their corresponding recordings. The
solid line depicts mean duration and lighter colors visualize variance. Right: Dis-
tributions of transcript lengths (the upper histogram) and audio durations (right-
most histograms) together with a visualization of their joint distribution. Darker
and lighter colors correspond to higher and lower relative frequencies, respectively.

We needed to re-romanize Chinese characters in the CSS10 dataset to make the
romanization consistent with Common Voice and our evaluation sets (see Sec-
tions 6.2.2, 6.3, and 6.4). Unfortunatelly, we were not able to use the original
pipeline applied by CSS10 authors (Jieba segmenter [Sun, 2018] and CC-CEDICT

56

dictionary [Denisowski, 2020]), so we instead used a python package called pinyin
[Yu, 2016]. The package uses a different segmenter or dictionaries and produces
slightly different transcripts. That is why our romanized forms of CSS10 do not
match the original variants. We did not have the same problem with Japanese be-
cause we were able to use the same tools as the authors of CSS10, i.e., the MeCab
[Kudo, 2015] for segmentation and conversion into katakana and a python version
of Romkan [Yao, 2013] for the romanization itself.

Audio data filtering: Recordings with durations longer than 10 seconds are
not very common and those corresponding to transcripts with lengths shorter than
25 characters have a high variance of durations. In comparison with LJ Speech
data, utterances with the same number of characters have generally higher vari-
ance of durations.

Therefore, we decided to remove a few examples from CSS10. We preserved
only examples with audio durations between 0.5 seconds and 10.1 seconds, we
excluded examples with transcripts longer than 190 characters and shorter than
3 characters, and we also removed examples with too deviated duration. More
specifically, we first took audio durations and computed means µ and variances
σ of all groups made of examples with the same transcript lengths. Then we
removed examples with durations outside the interval (µ − 3σ, µ + 3σ).

Resulting data statistics: See Figure 6.4 and Table 6.1 for the statistics of the
resulting cleaned dataset. In comparison with original data (see Figure 4.2 and
Table 4.1), the cleaned version has more similar duration and length distributions
across languages. It has a slightly lower mean transcript length and a noticeably
lower variance of audio durations (around 1.6 for all languages). It contains only
125.26 hours of recordings in total, i.e., we removed roughly 15 hours of data.

6.2.2 Common Voice

The CSS10 dataset provides a decent quantity of data. However, we realized
that it is hard to train a model capable of voice-cloning and code-switching us-
ing a dataset that contains data from just a single speaker for each language.
Language and speaker-specific information are too entangled and the situation
becomes even worse when the languages use different scripts and when speakers
have very different voices (which is the case of the CSS10 dataset). We enhanced
CSS10 data with data from Common Voice and build a multi-speaker dataset
that makes it possible to create multilingual systems with voice-cloning abilities.

The Common Voice dataset does not contain all languages that are included in
CSS10. The intersection of common languages of those datasets covers seven
languages, see Table 6.2 for details.

The vast majority of Common Voice recordings have very bad quality. Thus we
filtered out recordings with a negative rating. We excluded speakers with less
than 50 recordings. Then we went through a few samples from each speaker and
we removed all data from the particular speaker if the samples had poor quality.

57

Table 6.1: Summary of properties of cleaned CSS10 data grouped by language.
The second column contains total durations of original uncleaned CSS10. The
third column provides information about total lengths of all recordings. The fourth
column shows mean durations of examples with corresponding standard deviations.
The last column groups means and standard deviations of transcript lengths.

Language Recordings Dur.
Orig. Total [h]

Recordings
Dur. Total [h]

Recordings
Dur. Mean [s]

Transcripts
Mean Length

German 16.13 15.39 7.75 ± 1.64 99.7 ± 24.3
Greek 4.14 3.53 7.74 ± 1.66 115.7 ± 27.3

Spanish 23.83 20.85 7.44 ± 1.79 109.5 ± 30.7
Finnish 10.53 9.67 7.74 ± 1.58 94.7 ± 23.9
French 19.15 16.89 7.83 ± 1.59 108.9 ± 27.9

Hungarian 10.01 9.52 7.95 ± 1.49 110.0 ± 26.0
Japanese 14.92 14.33 7.88 ± 1.38 118.7 ± 23.8

Dutch 14.11 11.73 7.38 ± 1.79 114.7 ± 32.0
Russian 21.37 17.71 7.90 ± 1.48 90.8 ± 24.8
Chinese 6.45 5.64 7.62 ± 1.68 101.7 ± 27.3

Table 6.2: Summary of the total audio duration and the number of speakers of
the original Common Voice data in languages that are also included in CSS10.

Language Recordings
Total Dur. [h]

Number
of speakers

German 468 8460
Spanish 167 8252
French 350 8146

Japanese 3 52
Dutch 24 701

Russian 72 496
Chinese 26 963

We found out that recordings with the same speaker identification numbers do
not have to be recorded in the same conditions and by the same speaker (it
seems that the dataset contains a lot of data recorded in workshops which results
in multi-speaker data labeled with the same IDs). We attempted at splitting
these data into subsets with roughly equal conditions and speakers, and then we
removed subsets with bad quality and with less than 50 recordings again.

We end up with a relatively small dataset. It contains 39 German speakers,
22 French speakers, 11 Dutch speakers, 6 Chinese speakers, and 6 Russian speak-
ers. Japanese and Spanish data were removed completely. Transcripts were
mostly consistent so we did not have to do an extensive cleaning like in the case
of CSS10. We used the pinyin package for the romanization of Chinese.

On the other hand, recordings required much more processing. Many of them
contained artifacts at the beginnings and ends (possible causes were described in

58

Chapter 4). To solve this issue, we conservatively removed (low volume thresh-
olds in short windows) trailing and leading silence using Sound eXchange (SoX)
open source audio editing software [Barras, 2012]. Afterward, we inspected a few
recordings for each speaker and if we noticed that the automatic processing did
not resolve the problems, we manually performed a cleaning of all recordings of
the particular speaker. Table 6.3 summarizes the characteristics of our cleaned
data. It has 13.71 hours of audio data in total. In comparison with the cleaned
CSS10, it has approximately two or three times shorter recordings.

Table 6.3: Summary of properties of cleaned Common Voice data grouped by
language. The first column shows the total duration of all recordings of a partic-
ular language, the second column contains mean durations with the variance of
contained recordings, and the third describes mean length of transcripts.

Language Recordings
Duration Total [h]

Recordings
Duration Mean [s]

Transcripts
Mean Length

German 4.83 2.96 ± 1.20 50.2 ± 19.5
French 2.96 2.81 ± 1.27 48.5 ± 21.8
Dutch 1.30 2.79 ± 1.13 48.3 ± 18.9

Russian 3.37 3.70 ± 1.60 61.9 ± 28.3
Chinese 0.95 5.12 ± 2.08 73.8 ± 29.8

Figure 6.5: Graphs describing dependencies between transcript lengths and audio
durations of cleaned Dutch data from the union of Common Voice and CSS10
datasets. Left: Dependency between transcript lengths and recording durations,
the solid line stands for the mean duration and the light color visualizes variance.
Right: Illustration of length and duration distributions (top and right histograms,
respectively) together with a visualization of their joint distribution. Darker and
lighter colors correspond to higher and lower relative frequencies, respectively.

We use this dataset together with the cleaned CSS10 data for the purpose of
training of our models capable of voice cloning and code-switching. The cleaned
CSS10 dataset has rather longer recordings and transcripts (see Figure 6.4) and

59

the cleaned Common Voice dataset has shorter recordings, so the durations of
their recordings complement each other in this regard. Figure 6.5 visualizes dis-
tributions of Dutch data of the union of both datasets. The linear dependency
between transcript lengths and audio durations is preserved. There are two no-
ticeable peaks in the distributions. They correspond to the most frequent dura-
tions or lengths in CSS10 and Common Voice.

We follow Common Voice and release the cleaned dataset under the Creative
Common CC0 license.16 Cleaned transcripts and training or evaluation splits of
all datasets (cleaned CSS10, cleaned Common Voice, and their combination) are
available at the GitHub repository of this work.17

6.3 Multilingual Training

In this section, we would like to answer the first question that we asked at the
beginning of this chapter, i.e., whether the usage of multilingual data for training
of TTS systems can be beneficial. We are also going to touch the second question
and discuss the scalability of compared models. See the GitHub repository of this
work that contains links to synthesized samples and interactive demos.18

6.3.1 Experiment Setup

At first, we trained the four models described in Section 6.1 on a subset of the
cleaned CSS10 dataset (Section 6.2), without an ambition to do voice cloning or
code-switching. We trained the vanilla Tacotron 2 model for each language of
the CSS10 separately. We refer to the set of these monolingual models as Single
further in this text. The Single models were trained on particular language-
specific subsets of the cleaned CSS10. We switched off the adversarial speaker
classifier in the case of Shared and Generated models, i.e., the Shared model
was reduced to the vanilla Tacotron 2 with a discriminative language embedding
that is concatenated with encoder outputs. We used the same vocoder for all
models, i.e., the WaveRNN model trained on the same subset of CSS10 with
GTA spectrograms generated using the Single models (see Section 6.1.5).

Training setup: We trained the three models for 50k steps and we used the
same hyperparameters as described previously in Section 6.1 except for the learn-
ing rate.19 We decayed it every 10k training steps and in the case of the Separate
model, we used an initial learning rate of 10−4 both for the encoder and the de-
coder. The number of training steps and the learning rate schedule were tuned
individually in the case of Single models because the size of training data varies
across languages. For example, we decayed every 2.5k steps in the case of the
German model and we trained it just for 12.5k steps. Generally, we stopped

16https://www.dropbox.com/s/axoic9eoeii1zyd/clean_comvoi.tar.gz
17https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/data
18https://github.com/Tomiinek/Multilingual_Text_to_Speech
19See https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/params for

all parameter configurations used in the experiments described here.

60

https://www.dropbox.com/s/axoic9eoeii1zyd/clean_comvoi.tar.gz
https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/data
https://github.com/Tomiinek/Multilingual_Text_to_Speech
https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/params

training when we noticed a stable and striking growth of the loss on validation
data (64 random examples per language). For all models, we used mini-batches
of size 60 which were balanced with respect to languages.

Evaluation: To evaluate all the trained models, we used two held-out test
datasets. The first set is a random part of the cleaned CSS10 dataset. It con-
tains 64 samples for each of the ten languages. The second set consists of sen-
tences scraped from Wikipedia. We created this test set by random browsing of
Wikipedia pages (at a particular language version) and by taking a single sentence
for each visited page. We skipped pages that were most likely generated by bots
or better said using templates. We selected sentences that do not contain foreign
words and that do not need further normalization (so we did not pick sentences
with dates, etc.). In total, the set contains 50 sentences for each language. These
two evaluation datasets are available at the GitHub page of this work.20

We synthesized all evaluation data using all the models and computed the char-
acter error rate (CER) and in the case of in-domain data also the mel cepstral
distortion (MCD) as defined in Chapter 3. We send the synthesized audios to
Google Cloud Platform ASR21 and acquired transcripts. Then we computed char-
acter error rate between the ASR transcripts and the original ones. In the case
of Chinese and Japanese, we computed CERs using native characters.

Data-stress training experiment: We also wanted to test all the models in
more data-stress situations, so we randomly chose 900 examples for each language
from the training set. The amount of data roughly corresponds to 2 hours of
recordings per language. We tried to go even further and we selected a random
subset of 600 examples from the reduced dataset. We repeated the training
and evaluation of all models for both new reduced datasets. In this setting, we
accomplished training just for the Shared and Generated models and none of the
models could be trained successfully with just 300 training examples per language.
For both models, we decayed the learning rate every 7.5k and 5k training steps
in the case of the bigger and the smaller dataset, respectively.

6.3.2 Discussion of Results

We first discuss obtained CERs and MCDs of models trained on the full training
dataset. We support our findings by manual inspection. We also inspect the
language embeddings learned by the Generated model. Finally, we summarize the
CER and MCD results in the data-stress training and draw general conclusions
from this experiment.

CER results in the default setting: The CER results are presented in Ta-
ble 6.4. The second column contains error rates of the ground-truth recordings.
This gives us a notion about the performance of the ASR engine. Japanese has

20https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/evaluation
21Cloud Speech-to-Text, https://cloud.google.com/speech-to-text, accessed May 24, 2020

61

https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/evaluation
https://cloud.google.com/speech-to-text

high CERs in comparison with other languages. This may be an effect of the
Japanese script, where one character represents a longer segment than in an al-
phabet. On the other hand, the best performance on Spanish is not surprising
because the Google Platform ASR offers engines even for multiple Spanish ac-
cents. Note also the high variance of Russian CERs and worse results of Dutch
and Chinese.

Table 6.4: Summary of the CER evaluation of the Shared, Separate, Gener-
ated, and monolingual (“Single” column) models trained using the cleaned CSS10
dataset. The second column contains CERs obtained from original human record-
ings. The values in the table are sentence-level CER averages with their corre-
sponding standard deviations. The top and bottom lines correspond to the eval-
uation on in-domain and out-of-domain data, respectively. Bold texts emphasize
the model with the lowest average CER and “*” marks a statistically significant
difference against the model with the second-lowest CER according to a one-sided
paired t-test with 95% confidence level.

Language Ground
Truth Single Shared Separate Generated

German 4.8 ± 4.6 7.3 ± 6.0 8.3 ± 6.0 15.3 ± 6.0 *5.8±5.3
N/A 6.2 ± 4.7 5.0 ± 5.6 8.0 ± 6.3 3.8±4.0

Greek 8.7 ± 6.9 N/A 11.4±8.3 22.2 ± 8.3 11.6 ± 7.1
N/A N/A 6.9 ± 8.0 14.2 ± 12.5 8.1 ± 9.7

Spanish 3.9 ± 4.6 7.0 ± 10.8 7.2 ± 6.5 10.2 ± 8.1 7.0±9.8
N/A 2.8 ± 3.2 3.7 ± 3.7 5.6 ± 5.1 3.0 ± 3.7

Finnish 6.9 ± 10.4 18.6 ± 12.6 10.3±8.0 18.1 ± 11.4 10.4 ± 7.0
N/A 13.7 ± 11.5 9.1 ± 7.2 12.5 ± 10.7 *6.4±6.1

French 11.2 ± 7.3 25.2 ± 12.6 30.0 ± 14.3 54.5 ± 21.9 *19.0±12.9
N/A 22.1 ± 11.6 24.3 ± 12.0 51.2 ± 23.3 *15.8±8.5

Hungarian 6.3 ± 6.1 15.8 ± 9.5 15.9 ± 10.6 18.8 ± 9.9 *13.5±8.3
N/A 9.60 ± 7.9 8.1 ± 7.3 11.4 ± 8.6 7.7±6.7

Japanese 19.0 ± 9.3 28.8 ± 11.3 27.2 ± 11.8 33.7 ± 13.5 25.1±12.2
N/A 31.5 ± 19.8 24.2 ± 22.5 36.4 ± 21.1 23.6±21.3

Dutch 14.5 ± 7.4 33.4 ± 13.8 31.6 ± 12.5 49.0 ± 17.4 *22.6±9.6
N/A 24.9 ± 8.4 19.6 ± 10.6 48.7 ± 5.2 *16.4±9.6

Russian 12.3 ± 15.0 45.5 ± 24.1 44.4 ± 21.9 58.1 ± 24.7 *34.5±21.3
N/A 34.4 ± 21.7 23.3 ± 16.9 45.3 ± 20.4 19.4±16.7

Chinese 14.6 ± 11.8 62.8 ± 18.5 28.6 ± 15.9 27.3 ± 14.8 *20.5±13.6
N/A 74.9 ± 15.6 41.2 ± 19.1 42.1 ± 19.9 36.1±19.7

We were not able to train the Greek monolingual model, thus the “Single” column
does not contain any CER values for this language. The decoder started to overfit
soon before the attention could have been established. The CER performance
of Single models seems to be dependent on the amount of available training

62

data. For example, Chinese with approximately 5.6 hours has a very high error
rate in contrast to Spanish with 20.8 hours of training data. However, even
a higher amount of data does not necessarily ensure a successful model, Dutch
has 11.7 hours of data (more than Hungarian), but the CER is higher.

We had problems with the training of the Separate model. Most CERs of this
model are not competitive with the results of other models. This is probably
caused by the imbalance between the batch size of the encoder and the decoder.
However, our attempts to compensate for this using different learning rates were
not successful. Sharing of the data probably regularized the decoder, so the
attention was established even in the case of Greek. Also, the model has a much
better performance in comparison with the monolingual model on Chinese.

Either the Shared or the Generated model have a better CER than the corre-
sponding monolingual model (with 95% confidence according to a t-test and in
the case of both out-of-domain and in-domain data) except for Spanish, German,
and Hungarian.22 This suggests that multilingual training is really beneficial.

The Generated model is significantly better than the Shared model on Dutch
and French. It fulfills our expectations, as the Generated model should be more
flexible. We can see a lower mean CER of the Generated model for almost all
languages for both test datasets (except for Greek and Finnish), but without
a statistical significance (or statistically significant on only one of the datasets).

Table 6.5: Summary of the MCD evaluation of Shared, Separate, Generated, and
monolingual (“Single” column) models trained using the cleaned CSS10 dataset
with ten languages (the first column). The values in the table are per-sentence
MCD averages with their corresponding standard deviations. Bold texts highlight
the model with the lowest average MCD and “*” marks a statistically significant
difference against the model with the second-lowest MCD according to a one-sided
paired t-test with 95% confidence level.

Language Single Shared Separate Generated

German *3.85±1.03 4.54 ± 1.03 4.48 ± 1.01 4.42 ± 1.15
Greek N/A 3.73 ± 0.63 3.45±0.63 3.68 ± 0.51

Spanish 3.99 ± 0.72 4.08 ± 0.72 4.38 ± 0.48 *3.77 ± 0.75
Finnish 3.60 ± 0.83 3.64 ± 0.67 3.91 ± 0.80 3.50 ± 0.79
French 4.28 ± 0.51 4.39 ± 0.53 5.20 ± 0.76 *4.07 ± 0.54

Hungarian 3.49 ± 0.61 3.37 ± 0.65 3.45 ± 0.47 *3.17 ± 0.47
Japanese 3.21 ± 0.36 3.32 ± 0.33 3.42 ± 0.38 3.19 ± 0.40

Dutch 4.31 ± 0.43 4.42 ± 0.62 4.69 ± 0.63 *3.99 ± 0.37
Russian 7.15 ± 1.75 7.07 ± 0.43 7.25 ± 1.94 6.75 ± 1.71
Chinese 4.11 ± 0.56 3.71 ± 0.73 3.44 ± 0.41 *3.22 ± 0.55

MCD evaluation in the default setting: Table 6.5 shows the average MCD
of all models. The MCD is not as descriptive and interpretable as the CER, but

22This does not correspond to the “*” markings in Table 6.4, where the comparisons are made
against the second-best model, not the monolingual model.

63

we can notice that the Generated model has significantly lower values for five
languages; the difference is most profound for Dutch and French. This supports
our conclusion from CER results that the Generated model performs better.

Manual error analysis: We manually inspected and compared the outputs on
German, French, and partially Russian and Spanish. In the case of Spanish, all
the models (except for the Separate) work well and we noticed just differences in
the treatment of punctuation. On German, outputs produced by the Generated
model are clearly the best. Other models sometimes make unnatural pauses when
reaching a punctuation mark. Right after the pauses, they sometimes skip parts
of the sentences. French and Russian are noticeably better in the case of the
Generated model. Other models obviously mispronounce some words.

Language embeddings learned by the Generated model: We now at-
tempt to analyze the language embeddings learned by the Generated model. See
Figure 6.6 that describes similarities between them. It is hard to interpret it (and
it is a question if it is meaningful), for example, the similarity between Greek and
Japanese or Chinese and Finnish is quite odd. On the other hand, we can under-
stand the higher similarity between Dutch and German as these two languages
have high lexical similarity (meaning that the words come from the same origin).
The connection between French and Dutch or German and Hungarian is also
surprising, but it could be caused by some sharing caused by close geographical
coexistence of these languages. We would also expect a higher similarity between
Spanish and Greek.23

Figure 6.6: Visualization of the cosine similarity of learned language embeddings
of the Generated model. Left: Similarities of the model trained on the full training
dataset. Right: Similarities of the model trained on the reduced training dataset
with 900 sentences per language.

Data-stress training: We are now going to discuss the effects of the training
data reduction. Table 6.6 describes the performance of the Shared and the Gen-
erated models on both in-domain and out-of-domain test sets when trained on

23Note that Chinese and Japanese were romanized, while Greek and Russian were not.

64

reduced training sets.24 It seems that the Generated model can work slightly bet-
ter than the Shared model even in more data-stress situations. It has significantly
lower CERs for both test sets in the case of French, Russian, and Finnish.

Table 6.6: Summary of the CER evaluation of Shared and Generated models
trained on reduced training datasets (with 900 examples and 600 examples per
language). Upper and lower numbers correspond to the evaluation of in-domain
and out-of-domain data, respectively. Bold texts emphasize models with the lowest
average CER and “*” marks a statistically significant difference against another
model (i.e., the better Generated model is compared with the better Shared model)
according to a one-sided paired t-test with 95% confidence level.

Language Shared
600 examples

Shared
900 examples

Generated
600 examples

Generated
900 examples

German 13.2 ± 8.9 12.4 ± 8.0 15.6 ± 9.4 12.5 ± 9.3
11.2 ± 7.7 8.9 ± 7.0 12.4 ± 8.8 7.8 ± 6.2

Greek 16.8 ± 9.7 16.0 ± 10.2 14.2 ± 8.7 14.7 ± 9.8
11.3 ± 10.1 8.3 ± 8.3 9.0 ± 8.9 8.7 ± 10.5

Spanish 9.8 ± 7.5 9.9 ± 8.4 8.1 ± 6.0 *7.6 ± 5.9
6.6 ± 6.7 5.2 ± 7.0 5.2 ± 4.2 5.7 ± 6.8

Finnish 18.2 ± 12.2 18.4 ± 13.2 *13.2±10.9 14.0 ± 10.6
14.8 ± 10.7 16.0 ± 14.9 *8.4 ± 10.0 9.8 ± 7.8

French 40.2 ± 15.8 37.6 ± 16.2 32.9 ± 13.2 *27.2 ± 12.2
39.2 ± 18.5 34.5 ± 14.6 31.4 ± 13.3 *24.7 ± 11.4

Hungarian 21.4 ± 10.4 21.3 ± 13.0 *16.5±10.4 18.0 ± 10.4
13.4 ± 9.4 12.2 ± 9.3 13.5 ± 10.3 11.4 ± 7.7

Japanese 32.5 ± 12.8 32.2 ± 15.0 29.9±13.0 30.9 ± 13.5
36.4 ± 22.3 34.0 ± 20.0 33.4 ± 29.2 28.8 ± 17.1

Dutch 37.8 ± 13.5 30.4 ± 10.2 32.8 ± 12.3 28.3 ± 9.80
34.6 ± 15.7 27.4 ± 11.2 28.6 ± 12.0 *23.5 ± 10.7

Russian 60.4 ± 18.6 47.0 ± 20.5 38.5 ± 20.1 *34.4 ± 17.9
51.2 ± 24.6 36.4 ± 20.7 34.8 ± 23.4 *25.6 ± 21.7

Chinese 40.2 ± 15.2 39.8 ± 18.8 33.0 ± 15.5 *28.4 ± 15.6
51.0 ± 20.4 50.5 ± 21.4 47.1 ± 20.3 41.6 ± 20.9

In comparison with the models trained on the whole dataset (see Table 6.4),
these models are much worse according to CERs. However, we inspected the pro-
duced audio samples manually and the difference is less striking: for example, the
Generated model trained on 600 examples per language seems to produce intel-
ligible natural-sounding speech for German or French (however, with numerous
mispronunciations).

For the sake of completeness, we also present the MCD evaluation. See Table 6.7.
24Note that the other two models did not train successfully in this setting.

65

We can notice that the Generated model reaches significantly lower values for four
languages (French, Dutch, Spanish, and Japanese). These lower numbers might
reflect less frequent mispronunciations or a more intelligible or natural speech.

Conclusions: To summarize conclusions from this experiment, we found out
that it is beneficial to train Tacotron on multilingual data if we do not have
a large monolingual dataset. We realized that the Generated model has some
advantages, for example, for French, Dutch, or Russian, over other architectures
and that the Separate model does not scale to more languages very well. We
also found out that it is possible to train a multilingual TTS model that can
synthesize imperfect but intelligible speech with less than two hours of aligned
data per language.

Table 6.7: Summary of MCDs of Shared and Generated models trained on re-
duced training datasets (with 900 examples and 600 examples per language). Bold
texts highlight models with the lowest average MCD and “*” marks a statistically
significant difference against another model (i.e., the better Generated model is
compared with the better Shared model) according to a one-sided paired t-test with
95% confidence level.

Language Shared
600 utterances

Shared
900 utterances

Generated
600 utterances

Generated
900 uterances

German 4.91 ± 1.17 4.80 ± 1.04 4.70 ± 1.19 4.53 ± 1.08
Greek 3.87 ± 0.54 3.84 ± 0.52 3.78 ± 0.51 3.89 ± 0.56

Spanish 4.34 ± 0.61 4.21 ± 0.65 4.08 ± 0.54 *3.96 ± 0.54
Finnish 3.61 ± 0.67 3.70 ± 0.77 3.52 ± 0.77 3.57 ± 0.81
French 4.73 ± 0.55 4.65 ± 0.53 4.41 ± 0.47 *4.40 ± 0.51

Hungarian 3.57 ± 0.63 3.47 ± 0.51 3.40 ± 0.53 3.34 ± 0.54
Japanese 3.63 ± 0.34 3.53 ± 0.35 3.47 ± 0.36 *3.41 ± 0.34

Dutch 4.42 ± 0.39 4.35 ± 0.39 4.27 ± 0.34 *4.14 ± 0.35
Russian 7.44 ± 1.70 6.82 ± 1.81 7.25 ± 1.95 7.44 ± 1.87
Chinese 3.72 ± 0.51 3.83 ± 0.66 3.70 ± 0.56 3.59 ± 0.56

6.4 Code-switching and Voice Cloning

The second and last experiment that we would like to present examined code-
switching and voice-cloning abilities of the three models. Base Tacotron is ex-
cluded since monolingual models are not capable of code-switching in principle.
We again refer to the GitHub repository of this work that contains links to many
synthesized samples and interactive demos.25

25https://github.com/Tomiinek/Multilingual_Text_to_Speech

66

https://github.com/Tomiinek/Multilingual_Text_to_Speech

6.4.1 Experiment Setup

Training setup: Contrary to the previous experiment, we trained just the
Shared, Separate, and Generated models. We used the dataset that includes
a combination of cleaned Common Voice and cleaned CSS10 data (see Sec-
tion 6.2). It contains five languages, namely German, French, Dutch, Russian,
and Chinese. For vocoding, we used the same WaveRNN model as in Section 6.3.

All three models were trained for approximately 50k training steps. We used
hyperparameters similar to those described in Section 6.3.1,26 i.e., we halved the
learning rate every 10k steps and in the case of the Separate model, we used an
initial learning rate equal to 10−4. We set the size of the speaker embeddings to
32 and we used the language embedding of size 4 in the case of the Shared model.
The Generated model uses language embeddings of size 10 and generator layers of
size 4. We enabled the adversarial speaker classifiers of the Shared and Generated
models. They use a hidden layer of size 256 and their losses have weights 0.5 and
0.125, respectively. We used mini-batches of size 50 for all models.

Evaluation dataset: An objective evaluation of voice cloning or code-switching
is difficult. First, our datasets do not include code-switching sentences, so there
are no ground-truth recordings and the computation of the MCD is impossible.
Secondly, a calculation of the CER requires an ASR engine that can handle code-
switching. However, we do not have such an engine at disposal. Thus we had to
settle for a subjective comparison. For the evaluation, we used bilingual sentences
scraped from Wikipedia. We collected 400 sentences in total. For each language
in the dataset, we picked 80 sentences with a few foreign words (20 sentences for
each secondary language out of the four remaining ones). We romanized Chinese
using the pipeline described in a previous section. In most cases, the foreign words
are names of cities, places, or celebrities. It is common to transcribe Russian and
Chinese names to Latin, but also vice-versa, i.e., Russian and Chinese transcribe
German, Dutch, or French names into Cyrillic or Chinese scripts. That is why
we replaced foreign names with their native forms. For example, we changed
“délākèluówǎ shì fǎguó ...” to “Delacroix shì fǎguó ...”, etc., see Figure 6.7.

Figure 6.7: Examples of code-switching evaluation sentences.

Similarly as in Section 6.3, we only collected clean sentences without any num-
bers and non-standard characters, thus we did not have to do any cleaning or
normalization. The whole test set is available on GitHub.27 We synthesized the
evaluation sentences with speaker embeddings of CSS10 speakers for the corre-
sponding base language.

26See https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/params for
all parameter configurations used in the experiments described here.

27https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/evaluation

67

https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/params
https://github.com/Tomiinek/Multilingual_Text_to_Speech/tree/master/evaluation

Figure 6.8: User interface for the survey. There is a particular code-switching
sentence at the top of the page. The three recordings can be controlled by red,
green, and blue buttons. The recordings are randomly shuffled, so #1, #2, #3
do not correspond to the outputs of the same model throughout the survey. Note
the two questions and their scales. We highlighted the word “whole” of the second
question to encourage participants to penalize recordings because of incomplete-
ness. The scales have labels (“Bad”, “Poor”, “Fair”, “Good”, and “Excellent”)
and five emphasized points. Two consecutive points correspond to 0.1 increments.

Subjective evaluation setup: We realized the evaluation itself via an online
survey. Participants were first asked about their language abilities. For each
of the five languages, they had to fill in one of these options: “I am native”,
“I understand spoken”, “I am able to read”, “I have no experience”. Afterward,
they were given a set of samples to rate. We used a custom rating approach which
is a combination of the traditional Mean opinion score with five-point scale and
MUSHRA (see Chapter 3). For each sample, the transcript (with its romanized
variant) and outputs of all three compared models were shown at the same time.
Participants were allowed to replay the recordings and move between the samples
in order to refine their ratings. They were asked to rate the recordings on two
scales from 1 to 5 with 0.1 increments and with the usual labels “Bad”, “Poor”,
“Fair”, “Good”, and “Excellent”. The first scale concerned fluency, naturalness,

68

and stability of the voice and the second aimed at pronunciation accuracy. See
Figure 6.8 for further details. The participants were also asked to use headphones
during the evaluation. They could leave us a note at the end of the survey.

We decided to separate the two ratings because we would like to distinguish two
potential types of errors: (1) when the foreign words cause a change of speaker’s
voice and (2) when they are read fluently but the model does not respect their
correct pronunciation. These could be roughly described as fluency and adequacy
ratings. We make this distinction even though we are aware that these two ratings
are hard to disentangle. For example, if a model skips a part of a sentence (or in
an extreme case the whole sentence), we would like to strongly penalize the
pronunciation accuracy, but it is questionable whether to also reduce the fluency
rating. On one hand, the model did not say that part and could not show us its
abilities, on the other, all the words it said could be correct and natural. We left
the decision about how to rate in these situations to the study participants.

Participants: For each language, we hired ten native speakers who speak flu-
ently at least one of the other languages (for example, we hired Chinese par-
ticipants that are fluent in German, French, Dutch, or Russian) via the Prolific
crowdsourcing platform.28 Each native speaker of a particular language was given
twelve sentences where their native language was primary. Each of the secondary
languages was represented by three sentences. Besides the hired native speakers,
we asked 21 volunteers that are not native speakers of any of those languages to
also participate in the evaluation. We gave them ten sentences where the primary
and secondary languages were chosen at random.

Figure 6.9: Bar chart showing the language abilities of the participants of our
survey. The six groups gather participants with different native languages (the
Chinese group does not have ten native speakers, but all of them report as native
Chinese to Prolific). The “Other” group consists mostly of Czechs. All the groups
include five bars, each of them is labeled with a language code and shows the
distribution of the abilities of the ten corresponding participants (as they stated
at the start of our survey).

During the rating for both participant groups, we replaced three random system
outputs with their severely distorted versions that acted as sanity checks – any
participants that fail to rank the distorted system outputs as the lowest would

28Prolific, https://www.prolific.co, accessed May 25, 2020

69

https://www.prolific.co

be removed from the study. We, of course, removed the ratings associated with
these checks during evaluation. All hired participants passed this check, but
three volunteers did not. We also removed ratings of 8 volunteers who stated
poor language abilities (for example, they were able to read only German).

Figure 6.9 summarizes the language abilities of the participants who took part
in our survey. Even though we hired ten Chinese speakers who reported as
natives on Prolific, just six of them stated in our survey that they are natives (the
rest declared understanding spoken language). Some Dutch native participants
could also speak both German and French simultaneously. Nobody who would
understand both Chinese and Russian at the same time participated in the survey.

6.4.2 Discussion of Results

Table 6.8 summarizes the results of the survey. First, consider the two bottom
rows labeled “Total” and “Others”. They show means and variances of the ratings
of all hired native speakers and the volunteers, respectively. See Figure 6.10 that
compares ratings in these two groups. The Generated model is significantly bet-
ter in comparison with the two other models, except for the case of pronunciation
ratings of volunteer non-native participants. It is noticeable that the fluency or
naturalness ratings of the hired participants are slightly lower (and have lower
variance). Also, the accuracy ratings are lower, but more profoundly. Thus we
conclude that the non-native participants cannot distinguish between a correct
and slightly incorrect pronunciation. For example, a Dutch and a few Russian
speakers noted at the end of the survey that they encountered stresses on inap-
propriate parts of words and so they reduced the pronunciation ratings. We think
that the non-native participants that are most often able just to read the text
could not catch these nuances.

Table 6.8: Summary of mean “Naturalness, fluency, stability” and “Pronuncia-
tion accuracy” ratings collected in our survey. The upper part of the table groups
ratings of hired participants by their native languages. The lower part reports
the statistics of all hired participants’ ratings and also of all ratings of the other
participants who are not native speakers of any of the five languages. Besides the
means, we show also corresponding standard deviations. Bold font highlights mod-
els with the lowest mean rating and “*” marks a statistically significant difference
against other models according to a paired t-test with 95% confidence level.

Participant
group

Naturalness, fluency, stability Pronunciation accuracy

Generated Shared Separate Generated Shared Separate

German *3.4±0.9 3.0 ± 1.1 2.6 ± 1.0 *3.7±1.0 3.3 ± 1.1 3.1 ± 1.2
French *3.5±0.9 2.8 ± 1.0 2.6 ± 1.0 *3.7±0.9 3.1 ± 1.1 2.7 ± 1.2
Dutch *3.7±1.0 3.1 ± 0.9 2.5 ± 1.1 *3.9±1.1 3.4 ± 1.0 2.5 ± 1.2

Russian *3.4±0.9 2.8 ± 1.0 2.5 ± 1.0 *3.6±1.0 3.0 ± 1.2 2.6 ± 1.2
Chinese *3.5±1.2 2.7 ± 1.3 2.6 ± 1.2 *3.5±1.2 2.9 ± 1.4 2.8 ± 1.4

Total *3.5±1.0 2.9 ± 1.1 2.5 ± 1.1 *3.7±1.1 3.1 ± 1.2 2.7 ± 1.2
Others *3.7±1.1 3.2 ± 1.1 2.9 ± 1.3 3.9±1.1 3.6 ± 1.2 3.2 ± 1.4

70

Figure 6.10: Comparison of all ratings of naturalness or fluency and accuracy by
different groups of participants, i.e., hired native speakers and volunteers that are
not native speakers of any of the five languages. The whiskers show 5% and 95%
quantiles and boxes represent quartiles. Solid lines inside boxes depict medians.

We are going to take a closer look at the ratings of the hired participants. Ta-
ble 6.8 shows that the Generated model has significantly higher mean ratings. In
contrast, the Separate model seems to have the worst ratings constantly. Both the
Generated and the Shared model have the best mean rating on Dutch sentences
and the biggest gap is between their Chinese mean ratings. The lowest difference
is present in the case of German. Again, the accuracy ratings are slightly higher
in the comparison with the fluency ratings. See also Figure 6.11 and Figure 6.12
that group ratings by the primary language. We omit graphs that describe the
ratings grouped by the secondary languages because we found out that the rat-
ings across these groups do not vary very much. It seems that the performance
depends more on the particular primary language.

Figure 6.11: Comparison of the “fluency, naturalness, or stability” ratings of
native speakers grouped by their native language (which is identical with the dom-
inant languages of the rated sentences). Red, blue, and green colors correspond to
the Generated, Shared, and Separate model, respectively. The whiskers show 5%
and 95% quantiles and boxes represent quartiles with the median.

Manual error analysis: We manually inspected all the 400 synthesized record-
ings of all three models. We think that any lower ratings in case of of German,
French, Russian, and Dutch are mainly caused by inappropriate pronunciations

71

Figure 6.12: Comparison of the “pronunciation accuracy” ratings of native speak-
ers grouped by their native language (which is identical with the dominant lan-
guages of the rated sentences). Red, blue, and green colors correspond to the
Generated, Shared, and Separate model, respectively. The whiskers show 5% and
95% quantiles and boxes represent quartiles with the median.

of the foreign words. We should note the higher variance of ratings in the case of
Chinese. This is probably because of the bad stability of the Shared and Separate
models. We found out that these models when reading Chinese sometimes com-
pletely lose attention and skip some words or parts of synthesized sentences. This
happens especially when reaching foreign words. To further examine this prob-
lem, we counted the incomplete sentences (including those with a single missing
word) for each model (see Table 6.9). The errors in French system’s outputs are
less serious (such as a single or a couple of missing words) than in the Chinese
ones (a completely skipped part of a sentence). Possibly, these issues would not
be present if we used phoneme inputs.

Dominant
language

Number of incomplete sentences

Generated Shared Separate

German 0 2 3
French 5 10 8
Dutch 1 3 3

Russian 2 4 3
Chinese 6 22 21

Total 14 41 38

Table 6.9: Summary of the number of incomplete sentences (i.e., synthesized
recordings with missing words) that were produced by the three models.

Conclusions: To sum up our findings, we found that the Generated model
performs significantly better than the other two models on the code-switching
task. It is more stable and reaches higher ratings. This experiment partially
answers the question on the possibility of code-switching from the beginning
of this chapter. Even the Shared and Separate models can code-switch to an
extent when similar languages are concerned. However, they have problems with
more diverse inputs that mix languages with very diverse pronunciation. The

72

Generated model seems to be more suitable for the grapheme-based synthesis.
However, it is still not ideal and occasionally produces imperfect outputs.

Finally, we would like to mention that the Generated model allows cross-lingual
mixing of encoder outputs, which is not possible with the Shared or the Separate
model. This allows us to smoothly control pronunciation, so, for example, we
can weight the outputs of German and French encoders and successively obtain
different pronunciations of some words. Let us consider the name “Jean-Paul”.
By the weighting of encoders, we can synthesize pronunciations from German
[je:Pan paU

“
l] through [ZÃn paU

“
l] to French [ZÃ pOl].

73

Conclusion

As described in the Introduction, the goal of this work is to implement a system
for speech synthesis based on neural networks, train it on multiple languages,
evaluate its performance, and compare it with monolingual or other approaches.

In view of that, we implemented the Tacotron 2 model [Shen et al., 2018] for
spectrogram generation from input alphabetic characters that utilizes a few ideas
from the DCTTS architecture [Tachibana et al., 2017]. On top of that, we pro-
pose a novel approach to multilingual speech synthesis. Our meta-learning based
model, which we call Generated, uses a parameter generator network to enable
cross-lingual parameter sharing (Section 6.1.4). We compared it with two other
approaches which perform a full and no parameter sharing. We call these models
Shared (Section 6.1.2) and Separate (Section 6.1.3), respectively. We explored the
code-switching or voice cloning abilities of the three models that we extended to
support multi-speaker multilingual speech synthesis. The enhancement is, in the
case of the Shared and Generated models, based on domain adversarial training.

For the purpose of converting the synthesized spectrograms into audio waves, we
trained an open-source implementation of the WaveRNN vocoder Kalchbrenner
et al. [2018], see Section 6.1.5 for more details.

We compared our models on two tasks. The first one aimed at joint multilingual
training (Section 6.3). We trained the models on our cleaned version of the CSS10
dataset (Section 6.2.1) that includes ten languages, namely German, Greek, Span-
ish, Finnish, French, Hungarian, Japanese, Dutch, Russian, and Chinese. We also
examined the models’ behavior when training on small subsets of the dataset, in
the most extreme case just using approximately 80 minutes of recordings per
language. We found out that the sharing of encoder parameters is helpful and
that the Generated model shows a slightly better performance (with respect to
a character error rate and mel cepstral distortion evaluation) in comparison with
Shared and Separate models and individual monolingual baselines.

The second evaluation task concerned code-switching (Section 6.4). For training,
we used a subset of the CSS10 dataset that includes German, French, Dutch, Rus-
sian, and Chinese. Moreover, we enriched it by a multi-speaker dataset that we
created from Common Voice data (Section 6.2.2). For the purpose of evaluation,
we created a dataset that includes four hundred code-switching sentences. We ar-
ranged a survey for subjective evaluation where sixty participants took part. The
Generated model was rated significantly better than the other two architectures.

To summarize the whole work, we introduced a novel model for multilingual
text-to-speech synthesis based on meta-learning. It is capable of more effective
multilingual training, it enables a more stable and natural code-switching, voice
cloning, and pronunciation control, and it works with raw texts that do not
require expensive preprocessing such as phonemicization.

74

Future work: We consider multiple experiments with the Generated model.

First, it would be interesting to incorporate the TUNDRA dataset (Section 4.2)
into the experiments with multilingual training. It would allow us to use seven
more languages, and as the experiments with training in data-stress situations
shown, we would probably be able to use all of the languages including Danish
with less than one hour of aligned data.

Secondly, it would be great to examine fine-tuning of the Generated model (e.g.,
with fixed encoder and decoder parameters, but with trainable speaker and lan-
guage embeddings) to new languages. We think that the multilingual character
of the model could enable an easy adaptation with a low amount of data.

Finally, we think that it would be interesting to further investigate the stability
of code-switching synthesis. We also would like to incorporate more languages
into the code-switching model. The Common Voice dataset grows quickly and
we think that (at the time of writing this text) it would be probably possible to
gather also some Spanish and Japanese multi-speaker data.

Besides these straightforward experiments, we think about extending the Gener-
ated model to enable a few-shot speaker adaptation.

75

Bibliography

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor
Weber. Common Voice: A Massively-Multilingual Speech Corpus. ArXiv,
abs/1912.06670, 2019.

Sercan Arik, Mike Chrzanowski, Adam Coates, Gregory Frederick Diamos,
Andrew Gibiansky, Yongguo Kang, Xiongmin Li, John Miller, Andrew Ng,
Jonathan Raiman, Shubho Sengupta, and Mohammad Shoeybi. Deep Voice:
Real-time Neural Text-to-Speech. In Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 195–204, 2017.

Alan Baddeley. Your Memory, a User’s Guide. Collier, 1984. ISBN
9780020753100.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In 3rd International Con-
ference on Learning Representations, 2015.

Benjamin Barras. SoX : Sound eXchange. Flash informatique, 2012.

Eric Battenberg, RJ Skerry-Ryan, Soroosh Mariooryad, Daisy Stanton, David
Kao, Matt Shannon, and Tom Bagby. Location-Relative Attention Mechanisms
For Robust Long-Form Speech Synthesis. ArXiv, abs/1910.10288, 2019.

Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen,
Norman Casagrande, Luis C. Cobo, and Karen Simonyan. High Fidelity Speech
Synthesis with Adversarial Networks. In International Conference on Learning
Representations, 2020.

Alan W. Black. CMU Wilderness Multilingual Speech Dataset. In ICASSP 2019
- IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5971–5975, 2019.

Marcely Zanon Boito, William N. Havard, Mahault Garnerin, Éric Le Fer-
rand, and Laurent Besacier. MaSS: A Large and Clean Multilingual Cor-
pus of Sentence-aligned Spoken Utterances Extracted from the Bible. ArXiv,
abs/1907.12895, 2019.

E. O. Brigham and R. E. Morrow. The fast Fourier transform. IEEE Spectrum,
4(12):63–70, 1967.

M. Brown and L. Rabiner. Dynamic time warping for isolated word recognition
based on ordered graph searching techniques. In ICASSP ’82 - IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 7, pages 1255–1258, 1982.

76

Alan W. Black Nick Campbell. Optimising selection of units from speech
databases for concatenative synthesis. In EUROSPEECH-1995, pages 581–584,
1995.

Yuewen Cao, Xixin Wu, Songxiang Liu, Jianwei Yu, Xu Li, Zhiyong Wu, Xun-
ying Liu, and Helen M. Meng. End-to-end Code-switched TTS with Mix of
Monolingual Recordings. ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 6935–6939, 2019.

Yuan-Jui Chen, Tao Tu, Cheng chieh Yeh, and Hung-Yi Lee. End-to-End Text-
to-Speech for Low-Resource Languages by Cross-Lingual Transfer Learning. In
Proc. Interspeech 2019, pages 2075–2079, 2019.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, 2014.

Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-Based Models for Speech Recognition. In Advances
in Neural Information Processing Systems 28, pages 577–585. 2015.

Y. Chung, Y. Wang, W. Hsu, Y. Zhang, and R. J. Skerry-Ryan. Semi-supervised
Training for Improving Data Efficiency in End-to-end Speech Synthesis. In
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6940–6944, 2019.

Paul Andrew Denisowski. CC-CEDICT editor. https://cc-cedict.org/editor/
editor.php, 2020. Accessed February 29, 2020.

Homer Dudley and T. H. Tarnoczy. The Speaking Machine of Wolfgang von
Kempelen. The Journal of the Acoustical Society of America, 22(2):151–166,
1950.

Peter Ebden and Richard Sproat. The Kestrel TTS text normalization system.
Natural Language Engineering, 21:333–353, 2015.

Fatchord. WaveRNN Vocoder + TTS. https://github.com/fatchord/WaveRNN,
2019. Accessed March 31, 2020.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-Adversarial Training of Neural Networks. Journal of Machine Learning
Research (JMLR), 17(1):2096–2030, 2016.

Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng,
Wei Ping, Jonathan Raiman, and Yanqi Zhou. Deep Voice 2: Multi-Speaker
Neural Text-to-Speech. In Advances in Neural Information Processing Systems
30, pages 2962–2970. 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

77

https://cc-cedict.org/editor/editor.php
https://cc-cedict.org/editor/editor.php
https://github.com/fatchord/WaveRNN
http://www.deeplearningbook.org

D. Griffin and J. Lim. Signal estimation from modified short-time Fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2):
236–243, 1984.

Casper Hansen. Activation Functions Explained – GELU, SELU, ELU, ReLU and
more, 2019. URL https://mlfromscratch.com/activation-functions-explained/.

Fredric J. Harris. On the Use of Windows for Harmonic Analysis With the
Discrete Fourier Transform. In Proc. IEEE, pages 51–83, 1978.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Hee-Soo Heo, Jee weon Jung, Hye jin Shim, Il-Ho Yang, and Ha-Jin Yu. Cosine
similarity-based adversarial process. ArXiv, abs/1907.00542, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural
Computation, 9:1735–80, 1997.

W. Hsu, Y. Zhang, R. J. Weiss, Y. Chung, Y. Wang, Y. Wu, and J. Glass. Disen-
tangling Correlated Speaker and Noise for Speech Synthesis via Data Augmen-
tation and Adversarial Factorization. In ICASSP 2019 - 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5901–5905, 2019.

W. Hsu, Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Y. Cao, and Y. Wang. Hierar-
chical Generative Modeling for Controllable Speech Synthesis. In International
Conference on Learning Representations, 2019.

Keith Ito. The LJ Speech Dataset. https://keithito.com/LJ-Speech-Dataset/,
2017. Accessed February 29, 2020.

Keith Ito. A TensorFlow implementation of Google’s Tacotron speech synthesis
with pre-trained model. https://github.com/keithito/tacotron, 2018. Accessed
February 29, 2020.

ITU-T. Pulse code modulation (PCM) of voice frequencies. Recommendation
G.711, International Telecommunication Union, November 1988.

ITU-T. Subjective video quality assessment methods for multimedia applications.
Recommendation P.910, International Telecommunication Union, April 2008.

ITU-T. Method for the subjective assessment of intermediate quality levels of
coding systems. Recommendation BS.1534, International Telecommunication
Union, October 2015.

ITU-T. Mean opinion score (MOS) terminology. Recommendation P.800.1, In-
ternational Telecommunication Union, July 2016a.

ITU-T. Mean opinion score interpretation and reporting. Recommendation
P.800.2, International Telecommunication Union, July 2016b.

78

https://mlfromscratch.com/activation-functions-explained/
https://keithito.com/LJ-Speech-Dataset/
https://github.com/keithito/tacotron

Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng
Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, and Yonghui
Wu. Transfer Learning from Speaker Verification to Multispeaker Text-To-
Speech Synthesis. In Advances in Neural Information Processing Systems 31,
pages 4480–4490. 2018.

Dan Jurafsky and James H. Martin. Speech and language processing. Prentice
Hall, Pearson Education International, 2014.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander
Dieleman, and Koray Kavukcuoglu. Efficient Neural Audio Synthesis. In Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80,
pages 2410–2419, 2018.

Simon J. King. An introduction to statistical parametric speech synthesis.
Sadhana-Academy proceedings in engineering sciences, 36:837–852, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. In 3rd International Conference on Learning Representations, 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In
2nd International Conference on Learning Representations, Banff, AB, Canada,
2014.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas
Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville,
and Chris Pal. Zoneout: Regularizing RNNs by Randomly Preserving Hidden
Activations. ArXiv, abs/1606.01305, 2018.

R. Kubichek. Mel-cepstral distance measure for objective speech quality assess-
ment. In Proceedings of IEEE Pacific Rim Conference on Communications
Computers and Signal Processing, volume 1, pages 125–128, 1993.

Taku Kudo. MeCab: Yet Another Part-of-Speech and Morphological Analyzer.
https://taku910.github.io/mecab/, 2015. Accessed March 31, 2020.

Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C
Courville. MelGAN: Generative Adversarial Networks for Conditional Wave-
form Synthesis. In Advances in Neural Information Processing Systems 32,
pages 14910–14921. 2019.

Javier Latorre, Jakub Lachowicz, Jaime Lorenzo-Trueba, Thomas Merritt,
Thomas Drugman, Srikanth Ronanki, and Klimkov Viacheslav. Effect of Data
Reduction on Sequence-to-sequence Neural TTS. In ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7075–7079, 2019.

Younggun Lee and Taesu Kim. Robust and Fine-grained Prosody Control of
End-to-end Speech Synthesis. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5911–
5915, 2019.

79

https://taku910.github.io/mecab/

Younggun Lee, Suwon Shon, and Taesu Kim. Learning pronunciation from a
foreign language in speech synthesis networks. ArXiv, abs/1811.09364, 2018.

Francis F. Li and Trevor J. Cox. Digital signal processing in audio and acoustical
engineering. CRC Press, Taylor & Francis Group, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In
International Conference on Learning Representations, 2019.

M-AILABS. The M-AILABS Speech Dataset. https://www.caito.de/2019/01/
the-m-ailabs-speech-dataset/, 2019. Accessed February 29, 2020.

Rayhane Mama. DeepMind’s Tacotron-2 Tensorflow implementation. https://
github.com/Rayhane-mamah/Tacotron-2, 2018. Accessed February 29, 2020.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan
Sonderegger. Montreal Forced Aligner: Trainable Text-Speech Alignment Using
Kaldi. In Proc. Interspeech 2017, pages 498–502, 2017.

Brian McFee, Colin Raffel, Dawen Liang, Daniel Ellis, Matt McVicar, Eric Bat-
tenberg, and Oriol Nieto. librosa: Audio and Music Signal Analysis in Python.
In Proceedings of the 14th Python in Science Conference, 2015.

David R. Mortensen, Siddharth Dalmia, and Patrick Littell. Epitran: Preci-
sion G2P for Many Languages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

E. Nachmani and L. Wolf. Unsupervised Polyglot Text-to-speech. In ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR
corpus based on public domain audio books. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210,
2015.

Kyubyong Park. A TensorFlow implementation of Tacotron: A fully end-to-end
text-to-speech synthesis model. https://github.com/Kyubyong/tacotron, 2018.
Accessed February 29, 2020.

Kyubyong Park and Thomas Mulc. CSS10: A Collection of Single Speaker Speech
Datasets for 10 Languages. In Proc. Interspeech 2019, pages 1566–1570, 2019.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the Difficulty of Train-
ing Recurrent Neural Networks. In Proceedings of the 30th International Con-
ference on International Conference on Machine Learning - Volume 28, page
III–1310–III–1318, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

80

https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
https://github.com/Rayhane-mamah/Tacotron-2
https://github.com/Rayhane-mamah/Tacotron-2
https://github.com/Kyubyong/tacotron

Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. 2019.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word repre-
sentations. In Proceedings of North American Chapter of the Association for
Computational Linguistics, 2018.

Alberto Pettarin. Aeneas. https://github.com/readbeyond/aeneas/, 2017. Ac-
cessed February 29, 2020.

Luis Pineda, Hayde Castellanos, Javier Cuetara, Lucian Galescu, Janet Juárez,
Joaquim Llisterri, Patricia Pérez, and Luis Villaseñor-Pineda. The Corpus
DIMEx100: Transcription and evaluation. Language Resources and Evaluation,
44:347–370, 2009.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O. Arik, Ajay Kannan, Sha-
ran Narang, Jonathan Raiman, and John Miller. Deep Voice 3: Scaling Text-
to-Speech with Convolutional Sequence Learning. In International Conference
on Learning Representations, 2018.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig, and
Tom Michael Mitchell. Contextual Parameter Generation for Universal Neu-
ral Machine Translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 425–435, 2018.

Anusha Prakash, Anju Leela Thomas, S. Umesh, and Hema A Murthy. Building
Multilingual End-to-End Speech Synthesisers for Indian Languages. In Proc.
10th ISCA Speech Synthesis Workshop, pages 194–199, 2019.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A Flow-based
Generative Network for Speech Synthesis. In ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3617–3621, 2019.

Devendra Sachan and Graham Neubig. Parameter Sharing Methods for Multi-
lingual Self-Attentional Translation Models. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers, pages 261–271, 2018.

David Samuel, Aditya Ganeshan, and Jason Naradowsky. Meta-learning Extrac-
tors for Music Source Separation. ArXiv, abs/2002.07016, 2020.

Jonathan Shen, Ruoming Pang, Ron Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, R. J. Skerrv-Ryan, Rif
Saurous, Yannis Agiomvrgiannakis, and Yonghui Wu. Natural TTS Synthesis
by Conditioning Wavenet on MEL Spectrogram Predictions. In 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4779–4783, 2018.

81

https://github.com/readbeyond/aeneas/

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan Wang, Daisy Stanton,
Joel Shor, Ron J. Weiss, Rob Clark, and Rif A. Saurous. Towards End-to-
End Prosody Transfer for Expressive Speech Synthesis with Tacotron. ArXiv,
abs/1803.09047, 2018.

L. N. Smith. Cyclical Learning Rates for Training Neural Networks. In 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), pages
464–472, 2017.

R. William Soukoreff and I. Scott MacKenzie. Measuring errors in text entry
tasks: an application of the Levenshtein string distance statistic. In CHI EA
’01, 2001.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training Very
Deep Networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, page 2377–2385, 2015.

Adriana Stan, Oliver Watts, Y. Mamiya, Mircea Giurgiu, R. Clark, and Junichi
Yamagishi. TUNDRA: A multilingual corpus of found data for TTS research
created with light supervision. In Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, 2013.

S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measurement of
the Psychological Magnitude Pitch. The Journal of the Acoustical Society of
America, 8(3):185–190, 1937.

Junyi Sun. Jieba. https://github.com/fxsjy/jieba, 2018. Accessed February 29,
2020.

Surfingtech. ST-CMDS-20170001_1, Free ST Chinese Mandarin Corpus. https:
//www.openslr.org/38/, 2017. Accessed February 29, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the im-
portance of initialization and momentum in deep learning. In Proceedings of the
30th International Conference on Machine Learning, volume 28, pages 1139–
1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning
with Neural Networks. In Advances in Neural Information Processing Systems
27, pages 3104–3112. 2014.

Hideyuki Tachibana, Katsuya Uenoyama, and Shunsuke Aihara. Efficiently
Trainable Text-to-Speech System Based on Deep Convolutional Networks with
Guided Attention. 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4784–4788, 2017.

Yaniv Taigman, Lior Wolf, Adam Polyak, and Eliya Nachmani. VoiceLoop: Voice
Fitting and Synthesis via a Phonological Loop. In International Conference on
Learning Representations, 2018.

82

https://github.com/fxsjy/jieba
https://www.openslr.org/38/
https://www.openslr.org/38/

Paul Taylor. Text-to-Speech Synthesis. Cambridge University Press, 2009. ISBN
9780521899277.

Rafael Valle. Tacotron 2 - PyTorch implementation with faster-than-realtime
inference. https://github.com/NVIDIA/tacotron2, 2020. Accessed March 31,
2020.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alexander Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. Arxiv,
abs/1609.03499, 2016.

Sean Vasquez and Mike Lewis. MelNet: A Generative Model for Audio in the
Frequency Domain. Arxiv, abs/1906.01083, 2019.

Christophe Veaux, Junichi Yamagishi, and Kirsten Macdonald. CSTR VCTK
Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit, 2017.
URL https://doi.org/10.7488/ds/1994.

Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron Weiss,
Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc
Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif Saurous. Tacotron: Towards
End-to-End Speech Synthesis. In Proc. Interspeech 2017, pages 4006–4010,
2017.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry Ryan, Eric Battenberg, Joel
Shor, Ying Xiao, Ye Jia, Fei Ren, and Rif A. Saurous. Style Tokens: Unsuper-
vised Style Modeling, Control and Transfer in End-to-End Speech Synthesis.
In Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80, pages 5180–5189, 2018.

Yuxin Wu and Kaiming He. Group Normalization. In The European Conference
on Computer Vision (ECCV), 2018.

Mort Yao. A Romaji/Kana conversion library for Python. https://github.com/
soimort/python-romkan, 2013. Accessed February 29, 2020.

Lixin Yu. Pinyin. https://github.com/lxyu/pinyin, 2016. Accessed February 29,
2020.

Heiga Zen. Acoustic Modeling in Statistical Parametric Speech Synthesis - From
HMM to LSTM-RNN. In Proceedings of Machine Learning in Speech and Lan-
guage Processing, 2015.

Heiga Zen, Keiichi Tokuda, and Alan W. Black. Statistical parametric speech
synthesis. Speech Communication, 51(11):1039–1064, 2009.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng
Chen, and Yonghui Wu. LibriTTS: A Corpus Derived from LibriSpeech for
Text-to-Speech. In Proc. Interspeech 2019, pages 1526–1530, 2019.

83

https://github.com/NVIDIA/tacotron2
https://doi.org/10.7488/ds/1994
https://github.com/soimort/python-romkan
https://github.com/soimort/python-romkan
https://github.com/lxyu/pinyin

Jing-Xuan Zhang, Zhen-Hua Ling, and Li-Rong Dai. Forward Attention in
Sequence- To-Sequence Acoustic Modeling for Speech Synthesis. 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4789–4793, 2018.

Yu Zhang, Ron Weiss, Heiga Zen, Yonghui Wu, Zhifeng Chen, R.J. Skerry-Ryan,
Ye Jia, Andrew Rosenberg, and Bhuvana Ramabhadran. Learning to Speak
Fluently in a Foreign Language: Multilingual Speech Synthesis and Cross-
Language Voice Cloning. In Proc. Interspeech 2019, pages 2080–2084, 2019.

E. Zwicker. Subdivision of the Audible Frequency Range into Critical Bands
(Frequenzgruppen). The Journal of the Acoustical Society of America, 33(2):
248–248, 1961.

84

